The 24th Belgium-Netherlands Software Evolution Workshop. 17 - 18 November 2025, Enschede, The Netherlands.

& University of Antwerp
I Faculty of Science

FlaDaGe

A Framework for Generation of Synthetic Data to Compare
Flakiness Scores

Mert Ege Can, Joanna Kisaakye, Mutlu Beyazit, Serge Demeyer

Overview

Introduction Next Steps

Research Question

Introduction

What is a flaky test?

A test that alternates between different outcomes under unchanged

conditions.
Run 1 Run 2 Run 3

Passing Test m
Failing Test ‘—>‘—>‘
Flaky Test m

Mitigation Strategies for Flaky Tests

Re-run Monitor Fix
Execute tests multiple Record a long-term history Identify and resolve the
times. of test results. root cause of flakiness.

Q

Universityof_kntwerp . .
payorsiens The images are generated via Chat GPT.

The Flakiness Score

The flakiness score NFF Rate

of a test is derived
from analysing its
execution history
over a defined
period in the CI
pipeline.

Probabilistic Flakiness
Score

Entropy

0
O
e
O
O

n
o
%)
Q

=

=~

i

e

Flip Rate

Test Result History

Flake Rate

Transition Rate

Research Question

How can we design a unified and statistically controlled
dataset that enables a fair and

algorithm-neutral comparison of different flakiness scoring
algorithms?

How can we design a unified and statistically controlled dataset that enables a fair and

algorithm-neutral comparison of different flakiness scoring algorithms?

NFFRate;(f,r) = %

The number of test
failures that did not
lead to a product

fault, f, for a set of runs,
.

3Rehman, 2021

numI'ransitions(R, . 1p.ry)

T(Rv,*,{P,F}) —

numT otal Transitions(R,)

The number of times we observe
transition, P — F, divided by the number
of possible transitions or flips.

2 Kisaakye, 2024

How can we design a unified and statistically controlled dataset that enables a fair and

algorithm-neutral comparison of different flakiness scoring algorithms?

f numTransitions(R,, « (p.Fy)
NFFRate;(f,r) = = TR _ v, { P,
t(f.7) r (Boripry) numT otalTransitions(R, .)
The flakiness source is failed = The flakiness source is the transitions
tests without reports. between different test outcomes.
Likelihood is used to decide = A flakiness score is calculated for each
rerun order by Binomial test per version.

Stability Order (BSO).

3Rehman et al, 2021 2 Kisaakye et al, 2024

University of Antwerp

10

How can we design a unified and statistically controlled dataset that enables a fair and

algorithm-neutral comparison of different flakiness scoring algorithms?

Comparing different scoring models requires a shared neutral evaluation ground

Different result states/outcomes
Report Associations

Varied flakiness trends

Version and run structure

B whNh e

University of Antwerp 1 1
1 Faculty of Science

FlaDaGe

Artificial Dataset Generation Framework

Evolution

2020 IEEE/ACM 42nd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

Modeling and Ranking Flaky Tests at Apple

Emily Kowalczyk Karan Nair Zebao Gao
Apple Inc., Apple Inc., Apple Inc,,
Cupertino, USA Cupertino, USA Cupertino, USA
ekowalczyk@apple.com Karan_nair@apple zebao_gao@apple.com

Leo Silberstein Teng Long Atif Memon
Apple Inc., Apple Inc., Apple Inc.,
Cupertino, USA Cupertino, USA Cupertino, USA
Isilberstein@apple.com teng_long@apple.com atif_ memon@apple.com

ABSTRACT

Test flakiness—inability to reliably repeat a test’s Pass/Fail outcome—
continues to be a significant problem in Industry, adversely impact-
ing continuous integration and test pipelines. Completely elimi-
nating flaky tests is not a realistic option as a significant fraction
of system tests (typically non-hermetic) for services-based imple-
‘mentations exhibit some level of flakiness. In this paper, we view
the flakiness of a test as a rankable value, which we quantify, track
and assign a confidence. We develop two ways to model flakiness,
capturing the randomness of test results via entropy, and the tem-
poral variation via flipRate, and aggregating these over time. We
have implemented our flakiness scoring service and discuss how its
adoption has impacted test suites of two large services at Apple. We
show how flakiness is distributed across the tests in these services,
including typical score ranges and outliers. The flakiness scores are
used to monitor and detect changes in flakiness trends. Evaluation
results demonsirate near perfect accuracy in ranking, identification
and alignment with human interpretation. The scores were used to
identify 2 causes of flakiness in the dataset evaluated, which have
been confirmed, and where fixes have been implemented or are
underway. Our models reduced flakiness by 44% with less than 1%
loss in fault detection.

ACM Reference Format:

Emily Kowalezyk, Karan Nair, Zebao Gao, Leo Silberstein, Teng Long,
and Atif Memon. 2020. Modeling and Ranking Flaky Tests at Apple. In
Software Engineering in Practice (ICSE-SEIP '20), May 23-29, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 10 pages. https:/doi.org/10.
1145/3377813.3381370

1 INTRODUCTION

“Continuous integration (CI) and testing” is the cornerstone of qual-
ity assurance in today’s large companies [4, 11, 13, 14]. Developers
integrate code into a shared repository several times a day. Each
check-in is verified by an automated build-and-test process, fully

Permission to make digital or hard copies of all or part of this work for personal or
without

on the first page. Copyrightsfor components ofthis work owned by others than ACM
w oy or republish,

topost 1o redistribute to st pecs

fee. Request permissions from permissions@acm.org.

ICSE-SEIP 20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACHE ISBN 97-1-45(3-7123-0/20/5...$15.00

hitpsy/doi org/10.1145/3377813 3381370

Table 1: Example test result history.

integrated into the CI server, allowing developers to detect prob-
lems early [2, 10, 15, 17]. CI processes are severely hindered due
to the presence of flaky tests [14, 15. A flaky test is one that may
fail or pass non-deterministically. Intuitively, a flaky test's outcome
defies the developer's expectation. For example, if a developer runs
a test case multiple times, keeping all things constant (the test code,
source code, the environment, etc.), then the developer expects the
test should constantly pass or fail as no apparent changes have
occurred.

Consider 4 tests in Table 1. Each test is run 15 times, with passes
(green) and fails (red) shown in order of execution from left to right.
After 4 runs, we see epoch! ey, which is a change to the code under
test; ez is a modification to the test code that impacts all 4 tests; and
e is a change to the underlying data used by the software under test.
Assuming that everything else remains constant between epochs,
our expectation is that test results will not change between epochs
(they may certainly change across epochs). This is not the case
for tc, and fc;. Both tests passed and failed non-deterministically
before ey; test tcy between e and e3, and after e3.

Even though one can claim to control “everything” when re-
running tests, flakiness exists for a number of valid—and prevalent—
reasons. Network traffic and latency, asynchronous waits and con-
currency are some of the common causes of test flakiness [3, 8, 12].
Google reported 16% of their 4.2 million tests were flaky, causing
1.5% of their test runs to flake [15]. Similarly, Microsoft analyzed 5
projects and found 4.6% of their tests were flaky [10], and Mozilla
maintains a database of flaky tests, which they have estimated
grows by more than 100 new flaky tests each week [3].

‘We recognize that flaky tests may need to exist in a test reposi-
tory because they sometimes help to uncover real bugs - indeed
the underlying causes of flakiness may point to bugs in the test
infrastructure or the code under test. We however, focus on the CI
usecase, where flakiness causes tests to provide undesirable signals
that cause unnecessary delays. By and large, developers agree that
A
change is behavior.

caseatestto

'Kowalczyk et al, 2020

University of Antwerp
1 Faculty of Science

e Modelling flakiness as static distributions

with pre-assigned flakiness p

robabilities.

13

Evolution

2020 IEEE/ACM 42nd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

Modeling and Ranking Flaky Tests at Apple

Emily Kowalczyk Karan Nair Zebao Gao
Apple Inc., Apple Inc., Apple Inc,,
Cupertino, USA Cupertino, USA Cupertino, USA
ekowalczyk@apple.com Karan_nair@apple zebao_gao@apple.com
Leo Silberstein Teng Long Atif Memon
Apple Inc., Apple Inc., Apple Inc.,
Cupertino, USA Cupertino, USA Cupertino, USA
Isilberstein@apple.com teng_long@apple.com atif_ memon@apple.com
ABSTRACT Table 1: Example test result history.

Test flakiness—inability to reliably repeat a test’s Pass/Fail outcome—
continues to be a significant problem in Industry, adversely impact-
ing continuous integration and test pipelines. Completely elimi-
nating flaky tests is not a realistic option as a significant fraction
of system tests (typically non-hermetic) for services-based imple-
‘mentations exhibit some level of flakiness. In this paper, we view
the flakiness of a test as a rankable value, which we quantify, track
and assign a confidence. We develop two ways to model flakiness,
capturing the randomness of test results via entropy, and the tem-
poral variation via flipRate, and aggregating these over time. We
have implemented our flakiness scoring service and discuss how its
adoption has impacted test suites of two large services at Apple. We
show how flakiness is distributed across the tests in these services,
including typical score ranges and outliers. The flakiness scores are
used to monitor and detect changes in flakiness trends. Evaluation
results demonsirate near perfect accuracy in ranking, identification
and alignment with human interpretation. The scores were used to
identify 2 causes of flakiness in the dataset evaluated, which have
been confirmed, and where fixes have been implemented or are
underway. Our models reduced flakiness by 44% with less than 1%
loss in fault detection.

ACM Reference Format:

Emily Kowalezyk, Karan Nair, Zebao Gao, Leo Silberstein, Teng Long,
and Atif Memon. 2020. Modeling and Ranking Flaky Tests at Apple. In
Software Engineering in Practice (ICSE-SEIP '20), May 23-29, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 10 pages. https:/doi.org/10.
1145/3377813.3381370

1 INTRODUCTION

“Continuous integration (CI) and testing” is the cornerstone of qual-
ity assurance in today’s large companies [4, 11, 13, 14]. Developers
integrate code into a shared repository several times a day. Each
check-in is verified by an automated build-and-test process, fully

Permission to make digital or hard copies of all or part of this work for personal or

on the first page. Copyrightsfor components ofthis work owned by others than ACM
oy or republish,

topost 1o redistribute to st pecs

fee. Request permissions from permissions@acm.org.

ICSE-SEIP 20, May 23-29, 2020, Seoul, Republic of Korea

© 202 Asociation orComputng Machinery.

ACHE ISBN 97-1-45(3-7123-0/20/5...$15.00

hitpsy/doi org/10.1145/3377813 3381370

integrated into the CI server, allowing developers to detect prob-
lems early [2, 10, 15, 17]. CI processes are severely hindered due
to the presence of flaky tests [14, 15. A flaky test is one that may
fail or pass non-deterministically. Intuitively, a flaky test's outcome
defies the developer's expectation. For example, if a developer runs
a test case multiple times, keeping all things constant (the test code,
source code, the environment, etc.), then the developer expects the
test should constantly pass or fail as no apparent changes have
occurred.

Consider 4 tests in Table 1. Each test is run 15 times, with passes
(green) and fails (red) shown in order of execution from left to right.
After 4 runs, we see epoch ey, which is a change to the code under
test; ez is a modification to the test code that impacts all 4 tests; and
e is a change to the underlying data used by the software under test.
Assuming that everything else remains constant between epochs,
our expectation is that test results will not change between epochs
(they may certainly change across epochs). This is not the case
for tc, and fc;. Both tests passed and failed non-deterministically
before ey; test tcy between e and e3, and after e3.

Even though one can claim to control “everything” when re-
running tests, flakiness exists for a number of valid—and prevalent—
reasons. Network traffic and latency, asynchronous waits and con-
currency are some of the common causes of test flakiness [3, 8, 12].
Google reported 16% of their 4.2 million tests were flaky, causing
1.5% of their test runs to flake [15]. Similarly, Microsoft analyzed 5
projects and found 4.6% of their tests were flaky [10], and Mozilla
maintains a database of flaky tests, which they have estimated
grows by more than 100 new flaky tests each week [3].

‘We recognize that flaky tests may need to exist in a test reposi-
tory because they sometimes help to uncover real bugs - indeed
the underlying causes of flakiness may point to bugs in the test
infrastructure or the code under test. We however, focus on the CI
usecase, where flakiness causes tests to provide undesirable signals
that cause unnecessary delays. By and large, developers agree that
A
change its behavior

caseatestto

Extending a Flakiness Score for
System-Level Tests

Joanna Kisaakye®1,2(0000-0001-7081-5383] \fytly Beyazt!:2[0000-0003-2714-8155] and Serge
Demeyer!+2(0000-0002—4463—204]

! Universiteit Antwerpen, Antwerp, Belgium
joanna.kisaakye@uantwerpen.be
mutlu.beyazit@uantwerpen.be
serge.demeyer@uantwerpen.be
? Flanders Make vzw, Kortrijk, Belgium

Abstract. Flaky tests (i.e. tests with a inistic test under-
mine the trustworthiness of today’s DevOps build-pipelines, and recent research has inves-
tigated ways to detect or even remove flaky tests. In contrast, others proclaim that test
engineers should “Assume all Tests Are Flaky” because, in today’s build-pipelines, one can
never fully control all components of the system under test. Test engineers then capture the
randomness of test results via what is called a flakiness score. In this paper, we extend an
existing flakiness score to deal with system-level tests. We illustrate, via simulated test out-
comes, how this refined score can support three different strategies for dealing with flaky tests
(i) Rerun, (i) Fix and (iii) Monitor.

Keywords: DevOps - Flaky Tests - Flakiness Score

1 Introduction

DevOps is defined by Bass et al. as “a set of practices intended to reduce the time between committing
a change to a system and the change being placed into normal production, while ensuring high
quality” [2]. The combination of these practices is embedded in a fully automated build-pipeline.
Such a build-pipeline is driven by a series of automated tests that scrutinise every code change.

Flaky tests (i.e. automated tests with a nondeterministic test outcome) undermine the trustwor-
thiness of such a build-pipeline. Studies have shown that ﬂakiness1 when neglected, can lead to de-
veloper stress, and waste of time and r 1ti: 1 ising product quality [12,22,26].
Consequently, various existing studies offer different solutmns —both automated and manual— to
detect or even remove flaky tests [4,7.8,19,30,32].

In contrast, others proclaim that test engineers should “Assume all Tests Are Flaky” [3,13].
Indeed, many data cenmc systems have evolved from monolithic architectures to micro-service ar-

hi; es [5]. Bui li herefore rely on a distributed test execution environment where

some aspects of the system configuration are inherently out of the test engineers control. For em-
bedded systems, the build-pipeline distinguishes between model-in-the-loop, software-in-the-loop
and hardware-in-the-loop [28]. There as well, the various system configurations induce a certain
degree of uncertainty with respect to the real-time behaviour.

Adopting an “Assume all Tests Are Flaky” perspective, test engineers consider a test as having
a probabilistic outcome (the range [0...1] in favour of a particular test outcome) instead of deter-
ministic one (only one of {pass, fail}) and capture the randomness of test outcomes via what is

'Kowalczyk et al, 2020

University of Antwerp
1 Faculty of Science

2 Kisaakye et al, 2024

e Added dynamic
flakiness
distributions.

14

Evolution

2020 IEEE/ACM 42nd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

Modeling and Ranking Flaky Tests at Apple
Emily Kowalczyk Karan Nair Zebao Gao
Apple Inc., Apple Inc,, Apple Inc,,
Cupertino, USA Cupertino, USA Cupertino, USA
ekowalczyk@apple.com karan_nair@apple zebao_gao@apple.com
Leo Silberstein Teng Long Atif Memon
Apple Inc., Apple Inc., Apple Inc.,
Cupertino, USA Cupertino, USA Cupertino, USA
Isilberstein@apple.com teng_long@apple.com atif_ memon@apple.com

ABSTRACT

Test flakiness—inability to reliably repeat a test’s Pass/Fail outcome—
continues to be a significant problem in Industry, adversely impact-
ing continuous integration and test pipelines. Completely elimi-
nating flaky tests is not a realistic option as a significant fraction
of system tests (typically non-hermetic) for services-based imple-
‘mentations exhibit some level of flakiness. In this paper, we view
the flakiness of a test as a rankable value, which we quantify, track
and assign a confidence. We develop two ways to model flakiness,
capturing the randomness of test results via entropy, and the tem-
poral variation via flipRate, and aggregating these over time. We
have implemented our flakiness scoring service and discuss how its
adoption has impacted test suites of two large services at Apple. We
show how flakiness is distributed across the tests in these services,
including typical score ranges and outliers. The flakiness scores are
used to monitor and detect changes in flakiness trends. Evaluation
results demonsirate near perfect accuracy in ranking, identification
and alignment with human interpretation. The scores were used to
identify 2 causes of flakiness in the dataset evaluated, which have
been confirmed, and where fixes have been implemented or are
underway. Our models reduced flakiness by 44% with less than 1%
loss in fault detection.

ACM Reference Format:

Emily Kowalezyk, Karan Nair, Zebao Gao, Leo Silberstein, Teng Long,
and Atif Memon. 2020. Modeling and Ranking Flaky Tests at Apple. In
Software Engincering in Practice (ICSE-SEIP 20), May 23-25, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 10 pages. https:/doi.org/10.
1145/3377813.3381370

1 INTRODUCTION

“Continuous integration (CI) and testing” is the cornerstone of qual-
ity assurance in today’s large companies [4, 11, 13, 14]. Developers
integrate code into a shared repository several times a day. Each
check-in is verified by an automated build-and-test process, fully

Permission to make digital or hard copies of all or part of this work for personal or

on the first page. Copyrights for components o this work owned by others than ACM
Py or repubish,

topost 1o redistribute to st
fee. Request permissions from permissions@acm.org.
ICSE-SEIP 20, May 23-29, 2020, Seoul, Republic of Korea
© 202 Asociation orComputng Machinery.

ACHE ISBN 97-1-45(3-7123-0/20/5...$15.00
hitpsy/doi org/10.1145/3377813 3381370

Table 1: Example test result history.

integrated into the CI server, allowing developers to detect prob-
lems early [2, 10, 15, 17]. CI processes are severely hindered due
to the presence of flaky tests [14, 15. A flaky test is one that may
fail or pass non-deterministically. Intuitively, a flaky test's outcome
defies the developer's expectation. For example, if a developer runs
a test case multiple times, keeping all things constant (the test code,
source code, the environment, etc.), then the developer expects the
test should constantly pass or fail as no apparent changes have
occurred.

Consider 4 tests in Table 1. Each test is run 15 times, with passes
(green) and fails (red) shown in order of execution from left to right.
After 4 runs, we see epoch ey, which is a change to the code under
test; ez is a modification to the test code that impacts all 4 tests; and
e is a change to the underlying data used by the software under test.
Assuming that everything else remains constant between epochs,
our expectation is that test results will not change between epochs
(they may certainly change across epochs). This is not the case
for tc, and fc;. Both tests passed and failed non-deterministically
before ey; test tcy between e and e3, and after e3.

Even though one can claim to control “everything” when re-
running tests, flakiness exists for a number of valid—and prevalent—
reasons. Network traffic and latency, asynchronous waits and con-
currency are some of the common causes of test flakiness [3, 8, 12].
Google reported 16% of their 4.2 million tests were flaky, causing
1.5% of their test runs to flake [15]. Similarly, Microsoft analyzed 5
projects and found 4.6% of their tests were flaky [10], and Mozilla
maintains a database of flaky tests, which they have estimated
grows by more than 100 new flaky tests each week [3].

‘We recognize that flaky tests may need to exist in a test reposi-
tory because they sometimes help to uncover real bugs - indeed
the underlying causes of flakiness may point to bugs in the test
infrastructure or the code under test. We however, focus on the CI
usecase, where flakiness causes tests to provide undesirable signals
that cause unnecessary delays. By and large, developers agree that
A
change its behavior

caseatestto

Extending a Flakiness Score for
System-Level Tests

Joanna Kisaakye®1,2(0000-0001-7081-5383] \fytly Beyazt!:2[0000-0003-2714-8155] and Serge
Demeyer!+2(0000-0002—4463—204]

! Universiteit Antwerpen, Antwerp, Belgium
joanna.kisaakye@uantwerpen.be
mutlu.beyazit@uantwerpen.be
serge.demeyer@uantwerpen.be
? Flanders Make vzw, Kortrijk, Belgium

Abstract. Flaky tests tests with a inistic test under-
mine the trustworthiness of today’s DevOps build-pipelines, and recent research has inves-
tigated ways to detect or even remove flaky tests. In contrast, others proclaim that test
engineers should “Assume all Tests Are Flaky” because, in today’s build-pipelines, one can
never fully control all components of the system under test. Test engineers then capture the
randomness of test results via what is called a flakiness score. In this paper, we extend an
existing flakiness score to deal with system-level tests. We illustrate, via simulated test out-
comes, how this refined score can support three different strategies for dealing with flaky tests
(i) Rerun, (i) Fix and (iii) Monitor.

Keywords: DevOps - Flaky Tests - Flakiness Score

1 Introduction

DevOps is defined by Bass et al. as “a set of practices intended to reduce the time between committing
a change to a system and the change being placed into normal production, while ensuring high
quality” [2]. The combination of these practices is embedded in a fully automated build-pipeline.
Such a build-pipeline is driven by a series of automated tests that scrutinise every code change.

Flaky tests (i.e. automated tests with a nondeterministic test outcome) undermine the trustwor-
thiness of such a build-pipeline. Studies have shown that flakiness, when neglected, can lead to de-
veloper stress, and waste of time and r 1ti: 1 ising product quality [12,22,26].
Consequently, various existing studies offer different solutmns —both automated and manual— to
detect or even remove flaky tests [4,7.8,19,30,32].

In contrast, others proclaim that test engineers should “Assume all Tests Are Flaky” [3,13].
Indeed, many data cenmc systems have evolved from monolithic architectures to micro-service ar-

hi; es [5]. Bui li herefore rely on a distributed test execution environment where

some aspects of the system configuration are inherently out of the test engineers control. For em-
bedded systems, the build-pipeline distinguishes between model-in-the-loop, software-in-the-loop
and hardware-in-the-loop [28]. There as well, the various system configurations induce a certain
degree of uncertainty with respect to the real-time behaviour.

Adopting an “Assume all Tests Are Flaky” perspective, test engineers consider a test as having
a probabilistic outcome (the range [0...1] in favour of a particular test outcome) instead of deter-
ministic one (only one of {pass, fail}) and capture the randomness of test outcomes via what is

FlaDaGe: A Framework for Generation of Synthetic Data
to Compare Flakiness Scores

Mert Ege Can’, Joanna Kisaakye?, Mutlu Beyazit*? and Serge Demeyer*?

'Universiteit Antwerpen, Belgium
?Flanders Make vzw, Belgium

Abstract

Several industrial experience reports indicate that modern build pipelines suffer from flaky tests: tests with
non-deterministic results which disrupt the CI workflow. One way to mitigate this problem is by introducing a
flakiness score, a numerical value calculated from previous test runs indicating the non-deterministic behaviour
of a given test case over time. Different flakiness scores have been proposed in the white and grey literature;
each has been evaluated against datasets that are not publicly accessible. As such, it is impossible to compare the
different flakiness scores and their behavior under different scenarios. To alleviate this problem, we propose a
parameterized artificial dataset generation framework (FlaDaGe), which is tunable for different situations, and
show how it can be used to compare the performance of two separate scoring formulae.

Keywords

Flakiness, Flakiness scores, Continuous Integration, Automation

'Kowalczyk et al, 2020

University of Antwerp
1 Faculty of Science

2 Kisaakye et al, 2024

e Dynamic flakiness
distributions at
multiple levels

e Support for
different scoring
models

15

Concepts

University of Antwerp
1 Faculty of Science

Version

FlaDaGe

Report
Presence

16

Concepts

17

Concepts

.L

Uniform

u|

Trends
(Version / Run)

Decreasing

Increasing

University of Antwer, P
1 Faculty of Science

.L

Exponentially
Decreasing

Exponentially
Increasing

.L

Suddenly
Decreasing

Suddenly
Increasing

18

Run Attributes

1. TestId

2. Release Id
3. Runld

4. Report Flag
5

6

. Verdict
. Execution Timestamp

University of Antwerp
1 Faculty of Science

Dataset Overview

100 Tests

4 Versions 250 Runs

5000000 entries

49 Trend combinations

Test Level Flakiness Probability Distribution

or'o

SE'0 0€£0

SZ'0 020

ST'0 O0T1T0o

S0'0 000

| 2 N, S L. R SR e
n
-

L |
Vo
nnw

T
-
<

- €8
- 8L
- LL
- SL
- ZL

v
001

22

University of Antwerp

1 Faculty of Science

Flaky Test Distribution

Faulty

Flaky

Flakiness Setting

= (Clean tests never fail.
= Faulty tests always fail.

= Flaky tests randomly assign their result
in each run.

23

Flaky Outcome Distributions

NFF Flaky Outcomes Distribution

Reported

No-Report

EFS Flaky Outcomes Distribution

Skip

Error 10%

24

0.25

Flakiness Probability
° °
2 I
& 3

o
&
5

0.05

Trends

Average Flakiness Probability per Version

Trends
(Version)

u

Uniform

o4

Version

University of Antwerp
1 Faculty of Science

0.25

Flakiness Probability
° o
i N
i} S

o
S

0.05

O

* Increasing

Average Flakiness Probability per Version

Flakiness Probability

Decreasing

Average Flakiness Probability per Version

0.25

o
o
S

o
&

o
S

0.05

\"’\.

0.00

IS

1 2 3
Version

0.25

Flakiness Probability
° °
o N
i} 3

°
5

0.05

Version

Exponentially
Decreasing

Average Flakiness Probability per Version

0.30
0.25
2020

3

F

3
<015

I I]
c 010
0.05

E iall
xponentially ..
Increasing
Average Flakiness Probability per Version

2 3 4

Version

Flakiness Probability

0.25

g
N
S

s
i}

8
S

0.05

Suddenly
Decreasing

Average Flakiness Probability per Version

025

S

Flakiness Probability
G

s

0.05

Suddenly -
Increasing

Average Flakiness Probability per Version

Version

Version

25

Flakiness Probability

Trends

Trends
(Run)

Uniform

Average Flakiness Probability per Run

0175

0.150

0125

0.100

0075

0.050

0.025

U

100
Run

University of Antwerp

1 Faculty of Science

150

200

Flakiness Probability

Decreasing

Average Flakiness Probability per Run

0.200
0175
0.150
z
5 0125
2
g
= 0.100
g
3
0075
u 0.050
0025
0.000
250
I .
Average Flakiness Probability per Run
0.200
0175
0.150
0125
0.100
0.075
0.050
0.025
0.000
50 100 150 200 250

50 100 150 200
Run

250

Flakiness Probability

0.200

0175

0150

0125

0.100

0075

0.050

0,025

0.000

Exponentially
Decreasing

Average Flakiness Probability per Run

0175
0150
0125
0.100
0075

I I 0.050

0.025

Flakiness Probability

2
g

Exponentially e e e
Increasing

Average Flakiness Probability per Run 0200

0.175

0.150

0.125

0.100

0.075

Flakiness Probability

0.050

0.025

0.000

Run

Suddenly
Decreasing

Average Flakiness Probability per Run

0.200
0.175
0.150
2 —_—
£ 0125
g
]
: 0.100
§
c
£ 0.075
u 0.050
0.025
0.000
0 50 100 150 200 250
Run
Increasing
Average Flakiness Probability per Run
N
50 100 150 200 250
Run

Average Flakiness Probability per Test NFF Ratio per Test Verdict Ratio per Test

e —————— | 90
32 NFF 75 VERDICT
3 - True " - FAIL
87 69 . False 77 s ERROR
69 87 78 SKIP
79 20 82
74 11 83 Emm SUCCESSFUL
20 16 50
. 2 v -
95 26 56
22 80 59
o 95 61
94 65 64
27 38 67
4 94 41
68 68 48
26 27 43
38 81 34
65 93 14
66 66 12
42 91 22
96 25 79
45 22 74
23 31 69
31 6 32
91 35 87
19 8 97
86 86 16
81 1 20
53 73 95
62 19 1
35 99 80
46 26 04
52 53 4
9 84 65
o 63 13 96
o 17 68
e Increase : = i
98 63 66
45 92 26
71 71 27
47 54 93
13 52 1
73 36 2
- 84
17 9 38
36 62 86
39 29 31
5 i iy i g
Q23 = [
M M 3 52 45 19
21 23 8
° 99 39 54
§; 44 35
37 %(1) 73
10
7% 37 53
18 100 92
5 33 46
44 18 63
51 76 29
5 84
100 51 62
24 3 13
8951 24 9
204 40 98
25 48 36
724 49 17
75 50 71
77 55 99
78 56 47
83 61 52
82 41 57
85 1 43 23—
88 60 45
58 58 21
59 59 39 -j—
30 72 37 J—
60 70 44 -ju—
61 85 18 -je—
34 78 10 -ju—
40 83 76 -ju—
43 82 33—
41 4 77 5 -ju—
48 88 51 -p—
55 90 100
50 89 3 -j—
%] 75 24
28 4 64 49
30 4 67 40
15 22 88
12 4 14 89
14 4 28 85
74 34 60
2 30 28
4 7
12 15
University of Antwerp lg 3(2)
1 Faculty of Science . : . .] i i . T —————
000 005 010 015 020 025 030 035 040 00 0:2 0.4 0.6 08 1.0 0.0 0.2 0.4 06 08 10

Flakiness Probability NFF Ratio Verdict Ratio

NFF History of First 20 Tests Verdict History of First 20 Tests

NFF Status Verdict
® NFF = True ® FAIL
250 4 ® NFF = False 250 - e ERROR
SKIP
® SUCCESSFUL
H i t C I t.
200 2001
I ith . | i
the same data
for the first 20 I
= [= '
= =1
-4 -4
tests.
100 A 100 A '
i
50 5°|
~
' '
i i
0 0 ' I ' L
University of Antwerp
! Facultyof Science 12345678 91011121314151617181920 12345678 91011121314151617181920

Test Test

How can we design a unified and statistically controlled dataset that enables a fair and

algorithm-neutral comparison of different flakiness scoring algorithms?

1. Algorithm-neutral datasets are generated by random distribution.

2. 49 unique suites were created for every version/run trend combination.

3. Randomly assigned report presence flag and Pass, Fail, Skip and Error states.

University of Antwerp 29
1 Faculty of Science

University of Antwerp
1 Faculty of Science

Which algorithm is best suited for each task?

"
K_/

e Run efficiency ® Proximity to e Batch
e Correlation to Underlying prioritisation
Ground Truth Trend
ordering
Kendall’s Tau Frechet Distance Top-k Overlap

31

Universityof_Antwerp . .
payorsiens The images are generated via Chat GPT.

Reproducible

FlaDaGe Parameterised Dataset .
Comparison

Version 1

Report
Presence

Version M

AEDE[C

Version 1

Version

Version M

Trends
(Version / Run)
=]
; University of Antwerp
Uniform Decreasing Exponent_lally Sudden.ly | Ansymo | Antwerp Systems
Decreasing Decreasing i and Software Modelling
(m] u] u]

I . Exponentially Suddenly
ncreasing . .

Increasing Increasing

l} University of Antwerp 32
1 Faculty of Science

References

Emily Kowalczyk, Karan Nair, Zebao Gao, Leo Silberstein, Teng Long, and Atif Memon.
“Modeling and ranking flaky tests at Apple.” In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP '20), 2020.

= Joanna Kisaakye, Mutlu Beyazit, and Serge Demeyer. “Extending a flakiness score for

system-level tests.” IFIP International Conference on Testing Software and Systems.
Cham: Springer Nature Switzerland, 2024.

Maaz Hafeez Ur Rehman, and Peter C. Rigby. “Quantifying No-Fault-Found test
failures to prioritize inspection of flaky tests at Ericsson.” Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2021.

33

culty of Science

