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Introduction




What is a flaky test?

A test that alternates between different outcomes under unchanged

conditions.
Run 1 Run 2 Run 3

Passing Test m
Failing Test ‘—>‘—>‘
Flaky Test m



Mitigation Strategies for Flaky Tests

Re-run Monitor Fix
Execute tests multiple Record a long-term history Identify and resolve the
times. of test results. root cause of flakiness.

Q
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The Flakiness Score

The flakiness score NFF Rate

of a test is derived
from analysing its
execution history
over a defined
period in the CI
pipeline.
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Research Question




How can we design a unified and statistically controlled
dataset that enables a fair and

algorithm-neutral comparison of different flakiness scoring
algorithms?




How can we design a unified and statistically controlled dataset that enables a fair and

algorithm-neutral comparison of different flakiness scoring algorithms?

NFFRate;(f,r) = %

The number of test
failures that did not
lead to a product

fault, f, for a set of runs,
.

3Rehman, 2021

numI'ransitions(R, . 1p.ry)

T(Rv,*,{P,F}) —

numT otal Transitions(R, )

The number of times we observe
transition, P — F, divided by the number
of possible transitions or flips.

2 Kisaakye, 2024



How can we design a unified and statistically controlled dataset that enables a fair and

algorithm-neutral comparison of different flakiness scoring algorithms?

f numTransitions(R,, « (p.Fy)
NFFRate;(f,r) = = TR _ v, { P,
t(f.7) r (Boripry) numT otalTransitions(R, .)
The flakiness source is failed = The flakiness source is the transitions
tests without reports. between different test outcomes.
Likelihood is used to decide = A flakiness score is calculated for each
rerun order by Binomial test per version.

Stability Order (BSO).

3Rehman et al, 2021 2 Kisaakye et al, 2024
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How can we design a unified and statistically controlled dataset that enables a fair and

algorithm-neutral comparison of different flakiness scoring algorithms?

Comparing different scoring models requires a shared neutral evaluation ground

Different result states/outcomes
Report Associations

Varied flakiness trends

Version and run structure
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ABSTRACT

Test flakiness—inability to reliably repeat a test’s Pass/Fail outcome—
continues to be a significant problem in Industry, adversely impact-
ing continuous integration and test pipelines. Completely elimi-
nating flaky tests is not a realistic option as a significant fraction
of system tests (typically non-hermetic) for services-based imple-
‘mentations exhibit some level of flakiness. In this paper, we view
the flakiness of a test as a rankable value, which we quantify, track
and assign a confidence. We develop two ways to model flakiness,
capturing the randomness of test results via entropy, and the tem-
poral variation via flipRate, and aggregating these over time. We
have implemented our flakiness scoring service and discuss how its
adoption has impacted test suites of two large services at Apple. We
show how flakiness is distributed across the tests in these services,
including typical score ranges and outliers. The flakiness scores are
used to monitor and detect changes in flakiness trends. Evaluation
results demonsirate near perfect accuracy in ranking, identification
and alignment with human interpretation. The scores were used to
identify 2 causes of flakiness in the dataset evaluated, which have
been confirmed, and where fixes have been implemented or are
underway. Our models reduced flakiness by 44% with less than 1%
loss in fault detection.
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1 INTRODUCTION

“Continuous integration (CI) and testing” is the cornerstone of qual-
ity assurance in today’s large companies [4, 11, 13, 14]. Developers
integrate code into a shared repository several times a day. Each
check-in is verified by an automated build-and-test process, fully
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Table 1: Example test result history.

integrated into the CI server, allowing developers to detect prob-
lems early [2, 10, 15, 17]. CI processes are severely hindered due
to the presence of flaky tests [14, 15. A flaky test is one that may
fail or pass non-deterministically. Intuitively, a flaky test's outcome
defies the developer's expectation. For example, if a developer runs
a test case multiple times, keeping all things constant (the test code,
source code, the environment, etc.), then the developer expects the
test should constantly pass or fail as no apparent changes have
occurred.

Consider 4 tests in Table 1. Each test is run 15 times, with passes
(green) and fails (red) shown in order of execution from left to right.
After 4 runs, we see epoch! ey, which is a change to the code under
test; ez is a modification to the test code that impacts all 4 tests; and
e is a change to the underlying data used by the software under test.
Assuming that everything else remains constant between epochs,
our expectation is that test results will not change between epochs
(they may certainly change across epochs). This is not the case
for tc, and fc;. Both tests passed and failed non-deterministically
before ey; test tcy between e and e3, and after e3.

Even though one can claim to control “everything” when re-
running tests, flakiness exists for a number of valid—and prevalent—
reasons. Network traffic and latency, asynchronous waits and con-
currency are some of the common causes of test flakiness [3, 8, 12].
Google reported 16% of their 4.2 million tests were flaky, causing
1.5% of their test runs to flake [15]. Similarly, Microsoft analyzed 5
projects and found 4.6% of their tests were flaky [10], and Mozilla
maintains a database of flaky tests, which they have estimated
grows by more than 100 new flaky tests each week [3].

‘We recognize that flaky tests may need to exist in a test reposi-
tory because they sometimes help to uncover real bugs - indeed
the underlying causes of flakiness may point to bugs in the test
infrastructure or the code under test. We however, focus on the CI
usecase, where flakiness causes tests to provide undesirable signals
that cause unnecessary delays. By and large, developers agree that
A
change is behavior.
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ABSTRACT Table 1: Example test result history.

Test flakiness—inability to reliably repeat a test’s Pass/Fail outcome—
continues to be a significant problem in Industry, adversely impact-
ing continuous integration and test pipelines. Completely elimi-
nating flaky tests is not a realistic option as a significant fraction
of system tests (typically non-hermetic) for services-based imple-
‘mentations exhibit some level of flakiness. In this paper, we view
the flakiness of a test as a rankable value, which we quantify, track
and assign a confidence. We develop two ways to model flakiness,
capturing the randomness of test results via entropy, and the tem-
poral variation via flipRate, and aggregating these over time. We
have implemented our flakiness scoring service and discuss how its
adoption has impacted test suites of two large services at Apple. We
show how flakiness is distributed across the tests in these services,
including typical score ranges and outliers. The flakiness scores are
used to monitor and detect changes in flakiness trends. Evaluation
results demonsirate near perfect accuracy in ranking, identification
and alignment with human interpretation. The scores were used to
identify 2 causes of flakiness in the dataset evaluated, which have
been confirmed, and where fixes have been implemented or are
underway. Our models reduced flakiness by 44% with less than 1%
loss in fault detection.
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1 INTRODUCTION

“Continuous integration (CI) and testing” is the cornerstone of qual-
ity assurance in today’s large companies [4, 11, 13, 14]. Developers
integrate code into a shared repository several times a day. Each
check-in is verified by an automated build-and-test process, fully
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integrated into the CI server, allowing developers to detect prob-
lems early [2, 10, 15, 17]. CI processes are severely hindered due
to the presence of flaky tests [14, 15. A flaky test is one that may
fail or pass non-deterministically. Intuitively, a flaky test's outcome
defies the developer's expectation. For example, if a developer runs
a test case multiple times, keeping all things constant (the test code,
source code, the environment, etc.), then the developer expects the
test should constantly pass or fail as no apparent changes have
occurred.

Consider 4 tests in Table 1. Each test is run 15 times, with passes
(green) and fails (red) shown in order of execution from left to right.
After 4 runs, we see epoch ey, which is a change to the code under
test; ez is a modification to the test code that impacts all 4 tests; and
e is a change to the underlying data used by the software under test.
Assuming that everything else remains constant between epochs,
our expectation is that test results will not change between epochs
(they may certainly change across epochs). This is not the case
for tc, and fc;. Both tests passed and failed non-deterministically
before ey; test tcy between e and e3, and after e3.

Even though one can claim to control “everything” when re-
running tests, flakiness exists for a number of valid—and prevalent—
reasons. Network traffic and latency, asynchronous waits and con-
currency are some of the common causes of test flakiness [3, 8, 12].
Google reported 16% of their 4.2 million tests were flaky, causing
1.5% of their test runs to flake [15]. Similarly, Microsoft analyzed 5
projects and found 4.6% of their tests were flaky [10], and Mozilla
maintains a database of flaky tests, which they have estimated
grows by more than 100 new flaky tests each week [3].

‘We recognize that flaky tests may need to exist in a test reposi-
tory because they sometimes help to uncover real bugs - indeed
the underlying causes of flakiness may point to bugs in the test
infrastructure or the code under test. We however, focus on the CI
usecase, where flakiness causes tests to provide undesirable signals
that cause unnecessary delays. By and large, developers agree that
A
change its behavior
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Abstract. Flaky tests (i.e. tests with a inistic test under-
mine the trustworthiness of today’s DevOps build-pipelines, and recent research has inves-
tigated ways to detect or even remove flaky tests. In contrast, others proclaim that test
engineers should “Assume all Tests Are Flaky” because, in today’s build-pipelines, one can
never fully control all components of the system under test. Test engineers then capture the
randomness of test results via what is called a flakiness score. In this paper, we extend an
existing flakiness score to deal with system-level tests. We illustrate, via simulated test out-
comes, how this refined score can support three different strategies for dealing with flaky tests
(i) Rerun, (i) Fix and (iii) Monitor.

Keywords: DevOps - Flaky Tests - Flakiness Score

1 Introduction

DevOps is defined by Bass et al. as “a set of practices intended to reduce the time between committing
a change to a system and the change being placed into normal production, while ensuring high
quality” [2]. The combination of these practices is embedded in a fully automated build-pipeline.
Such a build-pipeline is driven by a series of automated tests that scrutinise every code change.

Flaky tests (i.e. automated tests with a nondeterministic test outcome) undermine the trustwor-
thiness of such a build-pipeline. Studies have shown that ﬂakiness1 when neglected, can lead to de-
veloper stress, and waste of time and r 1ti: 1 ising product quality [12,22,26].
Consequently, various existing studies offer different solutmns —both automated and manual— to
detect or even remove flaky tests [4,7.8,19,30,32].

In contrast, others proclaim that test engineers should “Assume all Tests Are Flaky” [3,13].
Indeed, many data cenmc systems have evolved from monolithic architectures to micro-service ar-

hi; es [5]. Bui li herefore rely on a distributed test execution environment where

some aspects of the system configuration are inherently out of the test engineers control. For em-
bedded systems, the build-pipeline distinguishes between model-in-the-loop, software-in-the-loop
and hardware-in-the-loop [28]. There as well, the various system configurations induce a certain
degree of uncertainty with respect to the real-time behaviour.

Adopting an “Assume all Tests Are Flaky” perspective, test engineers consider a test as having
a probabilistic outcome (the range [0...1] in favour of a particular test outcome) instead of deter-
ministic one (only one of {pass, fail}) and capture the randomness of test outcomes via what is
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ABSTRACT

Test flakiness—inability to reliably repeat a test’s Pass/Fail outcome—
continues to be a significant problem in Industry, adversely impact-
ing continuous integration and test pipelines. Completely elimi-
nating flaky tests is not a realistic option as a significant fraction
of system tests (typically non-hermetic) for services-based imple-
‘mentations exhibit some level of flakiness. In this paper, we view
the flakiness of a test as a rankable value, which we quantify, track
and assign a confidence. We develop two ways to model flakiness,
capturing the randomness of test results via entropy, and the tem-
poral variation via flipRate, and aggregating these over time. We
have implemented our flakiness scoring service and discuss how its
adoption has impacted test suites of two large services at Apple. We
show how flakiness is distributed across the tests in these services,
including typical score ranges and outliers. The flakiness scores are
used to monitor and detect changes in flakiness trends. Evaluation
results demonsirate near perfect accuracy in ranking, identification
and alignment with human interpretation. The scores were used to
identify 2 causes of flakiness in the dataset evaluated, which have
been confirmed, and where fixes have been implemented or are
underway. Our models reduced flakiness by 44% with less than 1%
loss in fault detection.
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1 INTRODUCTION

“Continuous integration (CI) and testing” is the cornerstone of qual-
ity assurance in today’s large companies [4, 11, 13, 14]. Developers
integrate code into a shared repository several times a day. Each
check-in is verified by an automated build-and-test process, fully
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Table 1: Example test result history.

integrated into the CI server, allowing developers to detect prob-
lems early [2, 10, 15, 17]. CI processes are severely hindered due
to the presence of flaky tests [14, 15. A flaky test is one that may
fail or pass non-deterministically. Intuitively, a flaky test's outcome
defies the developer's expectation. For example, if a developer runs
a test case multiple times, keeping all things constant (the test code,
source code, the environment, etc.), then the developer expects the
test should constantly pass or fail as no apparent changes have
occurred.

Consider 4 tests in Table 1. Each test is run 15 times, with passes
(green) and fails (red) shown in order of execution from left to right.
After 4 runs, we see epoch ey, which is a change to the code under
test; ez is a modification to the test code that impacts all 4 tests; and
e is a change to the underlying data used by the software under test.
Assuming that everything else remains constant between epochs,
our expectation is that test results will not change between epochs
(they may certainly change across epochs). This is not the case
for tc, and fc;. Both tests passed and failed non-deterministically
before ey; test tcy between e and e3, and after e3.

Even though one can claim to control “everything” when re-
running tests, flakiness exists for a number of valid—and prevalent—
reasons. Network traffic and latency, asynchronous waits and con-
currency are some of the common causes of test flakiness [3, 8, 12].
Google reported 16% of their 4.2 million tests were flaky, causing
1.5% of their test runs to flake [15]. Similarly, Microsoft analyzed 5
projects and found 4.6% of their tests were flaky [10], and Mozilla
maintains a database of flaky tests, which they have estimated
grows by more than 100 new flaky tests each week [3].

‘We recognize that flaky tests may need to exist in a test reposi-
tory because they sometimes help to uncover real bugs - indeed
the underlying causes of flakiness may point to bugs in the test
infrastructure or the code under test. We however, focus on the CI
usecase, where flakiness causes tests to provide undesirable signals
that cause unnecessary delays. By and large, developers agree that
A
change its behavior
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Abstract. Flaky tests tests with a inistic test under-
mine the trustworthiness of today’s DevOps build-pipelines, and recent research has inves-
tigated ways to detect or even remove flaky tests. In contrast, others proclaim that test
engineers should “Assume all Tests Are Flaky” because, in today’s build-pipelines, one can
never fully control all components of the system under test. Test engineers then capture the
randomness of test results via what is called a flakiness score. In this paper, we extend an
existing flakiness score to deal with system-level tests. We illustrate, via simulated test out-
comes, how this refined score can support three different strategies for dealing with flaky tests
(i) Rerun, (i) Fix and (iii) Monitor.

Keywords: DevOps - Flaky Tests - Flakiness Score

1 Introduction

DevOps is defined by Bass et al. as “a set of practices intended to reduce the time between committing
a change to a system and the change being placed into normal production, while ensuring high
quality” [2]. The combination of these practices is embedded in a fully automated build-pipeline.
Such a build-pipeline is driven by a series of automated tests that scrutinise every code change.

Flaky tests (i.e. automated tests with a nondeterministic test outcome) undermine the trustwor-
thiness of such a build-pipeline. Studies have shown that flakiness, when neglected, can lead to de-
veloper stress, and waste of time and r 1ti: 1 ising product quality [12,22,26].
Consequently, various existing studies offer different solutmns —both automated and manual— to
detect or even remove flaky tests [4,7.8,19,30,32].

In contrast, others proclaim that test engineers should “Assume all Tests Are Flaky” [3,13].
Indeed, many data cenmc systems have evolved from monolithic architectures to micro-service ar-

hi; es [5]. Bui li herefore rely on a distributed test execution environment where

some aspects of the system configuration are inherently out of the test engineers control. For em-
bedded systems, the build-pipeline distinguishes between model-in-the-loop, software-in-the-loop
and hardware-in-the-loop [28]. There as well, the various system configurations induce a certain
degree of uncertainty with respect to the real-time behaviour.

Adopting an “Assume all Tests Are Flaky” perspective, test engineers consider a test as having
a probabilistic outcome (the range [0...1] in favour of a particular test outcome) instead of deter-
ministic one (only one of {pass, fail}) and capture the randomness of test outcomes via what is

FlaDaGe: A Framework for Generation of Synthetic Data
to Compare Flakiness Scores
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Abstract

Several industrial experience reports indicate that modern build pipelines suffer from flaky tests: tests with
non-deterministic results which disrupt the CI workflow. One way to mitigate this problem is by introducing a
flakiness score, a numerical value calculated from previous test runs indicating the non-deterministic behaviour
of a given test case over time. Different flakiness scores have been proposed in the white and grey literature;
each has been evaluated against datasets that are not publicly accessible. As such, it is impossible to compare the
different flakiness scores and their behavior under different scenarios. To alleviate this problem, we propose a
parameterized artificial dataset generation framework (FlaDaGe), which is tunable for different situations, and
show how it can be used to compare the performance of two separate scoring formulae.
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Flaky Test Distribution

Faulty

Flaky

Flakiness Setting

= (Clean tests never fail.
= Faulty tests always fail.

= Flaky tests randomly assign their result
in each run.
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Flaky Outcome Distributions
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Average Flakiness Probability per Test NFF Ratio per Test Verdict Ratio per Test
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NFF History of First 20 Tests Verdict History of First 20 Tests
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How can we design a unified and statistically controlled dataset that enables a fair and

algorithm-neutral comparison of different flakiness scoring algorithms?

1. Algorithm-neutral datasets are generated by random distribution.

2. 49 unique suites were created for every version/run trend combination.

3. Randomly assigned report presence flag and Pass, Fail, Skip and Error states.
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Which algorithm is best suited for each task?

"
K_/

e Run efficiency ® Proximity to e Batch
e Correlation to Underlying prioritisation
Ground Truth Trend
ordering
Kendall’s Tau Frechet Distance Top-k Overlap
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