
Language-Level Support for Multiple Versions
for Software Evolution

Tomoyuki Aotani (Sanyo-Onoda City University)

Satsuki Kasuya
Lubis Luthfan Anshar
Hidehiko Masuhara
Yudai Tanabe

About me: Hidehiko Masuhara
• at Science Tokyo (née Tokyo Tech)

and Hasso Plattner Institute, U. Potsdam (Jun.-Nov. 2025)
• working on programming language design & impl.

and software development environments

1

reflection

concurrent
objects

partial evaluation

AOP COP

meta-JIT framework
high-level GPGPU language
programming with versions

programming experience
programming education

modularity

Talk Overview: Versions!
• Our “Programming with Versions”

• Versions are great

• Versions are not so great

• Our work

• Software evolution issues and versions (food for thought)
• architecture, management and compatibility

• continuous, gradual, incremental software evolution

• library migration

2

Programming with Versions

3

Versioned Packages (yeah, we all know)
• e.g., NumPy 2.3.4, async 3.2.6, ...
• a unit of deployment/development/reasoning

• outside of PL: managed by a package manager
(eg. npm, gradle, pyPI, RubyGems, Cargo,...)

• managed with version numbers

• inside of PL: associated to modules
(classes, functions, types, variables, etc)

4

Versioned Packages Help
Software Evolution
by
• enabling independent development

• provided & required

• allowing existence of multiple versions
• reasoning about compatibility

• “require NumPy 2.2 or later, but not 3.x”

• package managers can resolve combinations of versions

5

Versioned Packages Can’t Help
Software Evolution
• Painful package updates

• due to breaking changes

• Conflicting version requirements
• sometimes happens indirectly

(Versioned packages are merely an eruption point of
many software evolution problems.)

6

Package Updating can Require
Mass Changes
• Even for receiving

a small improvement
(or a security fix)

• Due to incompatible updates

Consequences:
• unwanted extra work
• procrastination

WebApp
framework

v.1.2.3 v.2.0.1

my app I wanna use this
new feature!

incompatible
updates

7

Indirect Version Conflicts
a.k.a. “Dependency Hell”
• Conflicting version

requirement
• Package managers can only

report but not resolve

• Difficult to predict and
resolve due to indirection

Graphics
Lib

v.1.2.3

Numeric
Lib

v.3.0.1

my game
app

Numeric
Lib

v.1.0.5

I wanna
use this!

8

Existing Research: What can We Do?
• Make “compatibility” more precise

• based on program analysis, etc.

• to alleviate version conflicts

• and link to version numbers (SemVer)

• Adapt new version to old (or vice versa)
• Migrate old programs to a new library

• with automated program refactoring/rewriting

are they all superficial solutions!?
9

Graphics
Lib

v.1.2.3

Numeric
Lib

v.3.0.1

my game
app

Numeric
Lib

v.1.0.5

I wanna
use this!

Source of the Problem:
One-Version-at-a-Time Principle

• in most programming languages

• hence package managers select
versions beforehand

• hence mass changes, conflicts, ...

Imagine all the versions
living together in peace!

10

Supporting Multiple Versions Itself
is not Difficult
• by just renaming modules

(so called “name mangling”)
• through package managers

i.e., without extending
programming languages
• at package level

• eg. cargo/Rust, OSGi/Java

11

Graphics
Lib.

v.1.2.3

Numeric
Lib

v.3.0.1

my game
app

Numeric
Lib

v.1.0.5

“NL”

“NL_3”

NL_3.calc(...)

NL.calc(...)

Programming with Versions
• our proposed paradigm

‹Programming›’21

• to support multiple versions of
a module in a program
• at different granuality

• with challenges (or non-)
• co-existence of two versions

• prevention of inconsistent usage

• software development process
12

WebApp
framework

v.1.2.3 v.2.0.1

my app I wanna use this
new feature!

incompatible
updates

Graphics
Lib.

v.1.2.3

Numeric
Lib

v.3.0.1

my game
app

Numeric
Lib

v.1.0.5

I wanna
use this!

Our PwV Languages Designs
• Ver.1: VL, a functional language ‹P›’21,APLAS’23

• function-level: f(x) where f has multiple versions

• Ver.2: BatakJava, class-based language SLE’22

• function&data, i.e., a class has multiple impls.

• Ver.3: Vython, dynamically-typed language JIP’25

• dynamic conflict detection (vs. type-based)

• Ver.4: another class-based language ongoing

• dynamic, i.e., an object can be of multiple versions

13

Data Consistency in VL ‹P›’21,APLAS’23

• support: allow a function
to have multiple versions
• version selection by data

consistency (or annotation)

• type-based data analysis
(similar to information flow
analysis)

14

Data created in a version must
be fed to the same version

icon = image(30,30)
photo = image(1000,750)
save(icon)
save(photo)
...
save(photo)

image(w,h) = ...
save(img) = ...

ver.1.1

image(w,h) = ...
save(img) = ...
save_png(img) = ...
save_jpg(img) = ...

ver.2.0

save_jpg(photo)
switch to

ver.2.0
detect

conflict

two versionstwo versions

Data&Behavior Consistency
in BatakJava SLE’22

• one class, multiple versions
• version selection

• by usage

• at instantiation
• version polymorphism
• inheritance

1515

icon = new Image(30,30)
photo = new Image(1000,750)
icon.save()
photo.save()
...
...im=icon...im=photo...
im.show()

Image
buf

save()
show()

ver.1.1

photo.save_jpg() switch to
ver.2.0

Image
buf

format
save()
show()
save_jpg()
save_png()

ver.2.0

Image
v2.0
Image
v1.1

Dynamic Version Switching (ongoing)

• one object, multiple versions
• switch representation versions

on demand

• state transformation is not
trivial

cf. multi-version schema
migration in DB

16

icon = new Image(30,30)
photo = new Image(1000,750)
icon.save()
photo.save()
...
photo.save_jpg()

Image
buf

save()
show()

ver.1.1

Image
buf

format
save()
show()
save_jpg()
save_png()

ver.2.0

switch to
ver.2.0

dataprogram
v1.1

program
v2.0

✓
✓

But Do They Really Work?
• Performance overhead?

• Almost zero to 3x.

• Doesn’t PwV delay critical updates?
• Yes and no.

• What about different yet compatible versions?
• Can multiple versions be used w/o conflicts?
• How library developers update their code?

• Need more assistance: compatibility checking, caller-side
migration support

17

de
ve

lo
pm

en
t p

ro
ce

ss

Let’s Talk About
Versions and Software Evolution!

18

Software Evolution Issues
from the Versions’ Perspectives
• Multi-version software in the wild
• Design principle of package managers
• Versions and compatibility
• Continuous/gradual/incremental software updating
• Library migrations
• ...and more?

visualization, AI generated code, mining, CI tools, testing,
modeling, ...

19

Multi-Version Software in the Wild
• There are many (I believe)
• Unknown architecture (to me)

• microservices?

• Best practices? / Issues?

• (Can PwV help?)

20

v.25001234 v.25008765

Design Principles of Package Managers
• Is name mangling good?

• rename packages when they conflict

• some package managers employ
this strategy (e.g., cargo, OSGi)

• can have side-effects to common
types

• leading errors after version resolution

• How serious is this problem in practice?

• No common ground for package manager designs!?
21

Graphics
Lib.

v.1.2.3

Numeric
Lib

v.3.0.1

my game
app

Numeric
Lib

v.1.0.5
“NL”

“NL_3”

NL_3.calc(...)
NL.calc(...)

Versions and Compatibility
• Different versions can be incompatible (but not always)

• Semantic Versioning https://semver.org/

• use version numbers to distinguish compatibility
• many violations in practice

• package level compatibility

• Need to reconsider versions with PwV
• to what unit versions should be assigned?

• what compatibility means there?

22

Continuous/Gradual/Incremental Updating

• We eventually have to
update all call sites
• but PwV allows to do it gradually

• can test intermediate states

• Challenges: development process
• How can we test?

• In what order should we update?

23

WebApp
framework

v.1.2.3 v.2.0.1

my app
I wanna use this

new feature!

incompatible
updates

Strangler Fig for Modernization [Fowler]

24
Can PwV help?

Kurniawan et al. DOI: 10.29244/medkon.27.3.83-90

...do a gradual
process of
modernization. Like
the fig, it begins
with small
additions, often
new features, that
are built on top of,
yet separate to the
legacy code base. ... https://martinfowler.com/bliki/StranglerFigApplication.html

...there's considerable work in figuring
out how to break it down into
manageable pieces. ...

Library Migration
• Updating from one library to another

• e.g., from TensorFlow to PyTorch

• compatible to some degree

• similar to version updates

Common ground for
version update & library migration?

25

Final Words: Versions are Interesting
• “Programming with Versions”

• allowing multiple versions in a language

• just one possible language design

• Versions and Software Evolution
• many interesting challenges (even w/o PwV)

• your thoughts?

• Shonan Meeting, Dagsthul Seminar, workshops?

26

