_

Language-Level Support for Multiple Versions
for Software Evolution

Tomoyuki Aotani (Sanyo-Onoda City University)
Satsuki Kasuya

Lubis Luthfan Anshar
Hidehiko Masuhara : SCIENCE TOKYO
Yudai Tanabe

[® F Institute of
About me: Hidehiko Masuhara = SCIENCETOKYO

« at Science Tokyo (née Tokyo Tech)
and Hasso Plattner Institute, U. Potsdam (Jun.-Nov. 2025)
« working on programming language design & impl.
and software development environments

concurrent programming education
objects modularity programming experience
reflection AOP COP programming with versions

high-level GPGPU language

partial evaluation meta-JIT framework

Institute of
: SCIENCE TOKYO

Talk Overview: Versions!

* Our “Programming with Versions”

* Versions are great
* Versions are not so great

e Our work

» Software evolution issues and versions (food for thought)

« architecture, management and compatibility
« continuous, gradual, incremental software evolution

 library migration

ttttttttttt

SCIENCE TOKYO

Programming with Versions

Institute of

o —
Versioned Packages (yeah, we all know) 7 >75E080

* e.g., NumPy 2.3.4, async 3.2.6, ...
 a unit of deployment/development/reasoning

« outside of PL: managed by a package manager
(eg. npm, gradle, pyPIl, RubyGems, Cargo,...)
 managed with version numbers
 inside of PL: associated to modules
(classes, functions, types, variables, etc)

o F Institute of
Versioned Packages Help = SCIENCE TOKYO

Software Evolution

by
* enabling independent development
« provided & required

 allowing existence of multiple versions
* reasoning about compatibility

* “require NumPy 2.2 or later, but not 3.x"

« package managers can resolve combinations of versions

° y F Institute of
Versioned Packages Can’t Help & SCIENCE TOKYO

Software Evolution

« Painful package updates

* due to breaking changes

» Conflicting version requirements

« sometimes happens indirectly

(Versioned packages are merely an eruption point of
many software evolution problems.)

Institute of
: SCIENCE TOKYO

Package Updating can Require

Mass Changes WebApp
o framework
* Even for receiving v.1.2.3 v.2.0.1

a small improvement g

o ut
incompatible
updates

(or a security fix)
+ Due to incompatible updates 3"
my app

| wanna use this
new feature!

Consequences:
* unwanted extra work
» procrastination

Indirect Version Conflicts
a.k.a. “Dependency Hell”

* Conflicting version
requirement

« Package managers can only
report but not resolve

 Difficult to predict and
resolve due to indirection

Institute of
: SCIENCE TOKYO

Graphics *Numeric

Lib Lib
v.1.2.3 v.3.0.1
my game | wanna

app use this!

Institute of
: SCIENCE TOKYO

Existing Research: What can We Do?

* Make “compatibility” more precise |

« based on program analysis, etc. 7'
Graphics *Numeric

 to alleviate version conflicts ik g
. . v.1,2.3 v.3.0.1
» and link to version numbers (SemVer)) /
 Adapt new version to old (or vice versa) " app | | usethin

« Migrate old programs to a new library

« with automated program refactoring/rewriting

are they all superficial solutions!?

F Institute of

Source of the Problem: = SCIENCE TOKYO

One-Version-at-a-Time Principle

* in most programming languages — — ——a
l
l |
* hence package managers select e, sl ¥ 2
1 |
versions beforehand o~ / i
1
1 |
I |

* hence mass changes, conflicts, ...
Imagine all the versions
living together in peace!

—
o

Supportmg Multiple Versions Itself

is not Difficult

* by just renaming modules
(so called “name mangling”)
» through package managers

I.e., without extending
programming languages

at package level

eg. cargo/Rust, OSGi/Java

Institute of
: SCIENCE TOKYO

Numerlc
Lib
v.1.0.5

“‘N L_B))
Graphics Numeric
Lib. Lib
v.1.2.3 v.3.0.1

NL.calc(...)

my game NL 3.calc(...)
app

11

Programming with Versions

our proposed paradigm

<Programming>'21

to support multiple versions of
a module in a program

 at different granuality

with challenges (or non-)

e co-existence of two versions
« prevention of inconsistent usage

« software development process

......
*

Numeric " Institute of

i Lb | Zm SCIENCE TOKYO
s v.1.0.5 :
Graphics e -
Lib. Lib
v.1.2.3 : v.3.0.1 :
| wanna
app use this!
g e e e o o e e e e e e e
WebApp
framework
- wv.1.23 v.2.0.1
.. ‘

incompatible
updates

my app | wanna use this
new feature!

12

Our PwV Languages Designs

« Ver.1: VL, a functional language 21 APLAS23
« function-level: f(x) where f has multiple versions

« \er.2: BatakJava, class-based language >'t2?
« function&data, i.e,, a class has multiple impls.

« Ver.3: Vython, dynamically-typed language /"'
« dynamic conflict detection (vs. type-based)

« Ver4: another class-based language °"9°"9

e dynamig, i.e., an object can be of multiple versions

Institute of
: SCIENCE TOKYO

13

Data Consistency in VL ' 21APLAS S

« support: allow a function
to have multiple versions

 version selection by data
consistency (or annotation)

Data created in a version must
be fed to the same version

« type-based data analysis
(similar to information flow
analysis)

Institute of
: SCIENCE TOKYO

image(w,h) = ... image(w,h) = ...
save(img) = ...
save_png(img) =
save_jpg(img) =
ver.1.1 ver.2.0
two versions |
icon = image(22,30)
photo = image(1000,750)
save(1.con)h . switch to
save_jpg(photo) yero g
save(photo) detect
conflict

14

Institute of
: SCIENCE TOKYO

Data&Behavior Consistency

0 SLE'22
in BatakJava Tmage Tmage
buf buf
* one class, multiple versions p—e LB
» version selection show() show()
save_jpg()
* by usage save_png()
ver.1.1 ver.2.0
« at instantiation icon = new Image(30,30)
. . photo = new Image(1000,750)
* version polymorphism icon.save()
. inheritance photo.save_jpg() switch to
ver.2.0
...1lm=icon...im=photo...
im.show()

15

Dynamic Version Switching (°"goin9)

* one object, multiple versions

« switch representation versions

on demand

 state transformation is not

trivial
program program
v1.1 > data < v2.0

cf. multi-version schema
migration in DB

r
1
L.

Institute of
: SCIENCE TOKYO

Image Image
buf buf
format
save()V/
show() show()
Image save_jpg() Vv
‘,1:]//) save_png()
ver.1.1 ver.2.0
icon = new Image(36,.9) _______
photo = new Image(100. 750) :
icon.save()
photo.save() switch to
ver.2.0

photo.save jpg()

16

F Institute of

But Do They Rea"y Work? s SCIENCE TOKYO

e Performance overhead?

« Almost zero to 3x.

 Doesn’t PwV delay critical updates?

* Yes and no.
 What about different yet compatible versions?
« Can multiple versions be used w/o conflicts?
 How library developers update their code?

 Need more assistance: compatibility checking, caller-side
migration support

development process

17

ttttttttttt

SCIENCE TOKYO

Let's Talk About
Versions and Software Evolution!

18

Software Evolution Issues

F Institute of

from the Versions’ Perspectives

Multi-version software in the wild

Design principle of package managers

Versions and compatibility
Continuous/gradual/incremental software updating
Library migrations

...and more?

visualization, Al generated code, mining, Cl tools, testing,
modeling, ...

gm SCIENCE TOKYO

19

’ Institute of

Multi-Version Software in the Wild # SCIENCETOKYO
* There are many (I believe) ST
» Unknown architecture (to me) [A

* microservices? ~N—

* Best practices? / Issues?

* (Can PwV help?)

20

F Institute of

Design Principles of Package Managers g SCIENCE TOKYO

“N LJ) Numeric

- ? Lib
Is name mangling good? oo
* rename packages when they conflict t/- Nl 37
Graphics Numerlt
« some package managers employ Lib. Lib
. . v.1.2.3 vINA1 ‘
this strategy (e.g., cargo, OSGi) NL.calcc...)
 can have side-effects to common MY 9ame 1 NL_3.calc(...)

app

types

leading errors after version resolution

How serious is this problem in practice?

No common ground for package manager designs!?

21

° on ome g Insitute of
Versions and Compatibility & SCIENCE TOKYO

 Different versions can be incompatible (but not always)

 Semantic Versioning "ts//semverora/

* use version numbers to distinguish compatibility
* many violations in practice

« package level compatibility

* Need to reconsider versions with PwV

* to what unit versions should be assigned?

« what compatibility means there?

22

Continuous/Gradual/Incremental Updating

WebApp
We eventually have to framework

update all call sites

v.1.2.3

* but PwV allows to do it gradually

 can test intermediate states ¥ ,

my ap
Challenges: development process
* How can we test?

* In what order should we update?

Institute of
: SCIENCE TOKYO

v.2.0.1

* LR 4
* *
*
-

incompatible
updates

| wanna use this
new feature!

23

Institute of
: SCIENCE TOKYO

Strangler Fig for Modernization [Fowler]

..do a gradual
process of
modernization. Like
the fig, it begins

with small

additions, often
new features, that ..there's considerable work in figuring

are built on top of, out how to break it down into

yet separate to the manageable pieces. ...
|egacy COde base. . https://martinfowler.com/bliki/StranglerFigApplication.html

Can PwV help?

Kurniawan et al. DOI: 10.29244/medkon.27.3.83-90

24

Institute of
: SCIENCE TOKYO

Library Migration
« Updating from one library to another

* e.g., from TensorFlow to PyTorch
« compatible to some degree

 similar to version updates

Common ground for
version update & library migration?

25

Final Words: Versions are Interesting

* “Programming with Versions”

 allowing multiple versions in a language

+ just one possible language design

 Versions and Software Evolution

* many interesting challenges (even w/o PwV)
« your thoughts?

« Shonan Meeting, Dagsthul Seminar, workshops?

Institute of
: SCIENCE TOKYO

26

