
ClassViz:
From Inspection Tool to Research Vessel

Satrio Adi Rukmono • TU Eindhoven • s.a.rukmono@tue.nl / satrio@rukmono.id

mailto:s.a.rukmono@tue.nl
mailto:satrio@rukmono.id


Why Visualisation?

 Visualisation helps bridge complex 
structure and human understanding.

 Code graphs are precise but large and 
hard to inspect.

 ClassViz was born to make structure 
visible during development and 
debugging of code-to-graph 
instantiation tools.



Research Questions … ?

RQ1: What visual affordances support effective lightweight inspection of labelled-
property code graphs for correctness and usability assessment?

RQ2: What factors influence the adoption, extension, and appropriation of software 
structure visualisation tools in educational and industrial contexts?

RQ3: How can software visualisation tools be designed to serve as effective frontends
for diverse automated analyses such as architectural recovery and summarisation?



RQ1: Lightweight Visual Inspection

 ClassViz started as a browser tool to sanity-check Labelled Property Graphs 
(LPGs).

 Design principles: nested boxes (packages/classes), UML-style arrows, filters, click-
to-explore.

 Visual affordances prioritised clarity and quick feedback over complexity.



Screencast for an initial version of ClassViz: https://satrio.rukmono.id/classviz/screencast.mp4

https://satrio.rukmono.id/classviz/screencast.mp4
https://satrio.rukmono.id/classviz/screencast.mp4


RQ2: Adoption & Extension
 ClassViz spread through student and 

industrial use due to:

 Minimal infra, low barrier to entry,

 Open-ended and modifiable 
architecture.

 Spawns 11 student projects & helps 
several graduation projects!

 Behavioural overlays (Fung, Tanis, 
He, van Esch),

 Layout experiments (Kloet, Jeffrey, 
Atisomya),

 Industry tools like Arvisan 
(Kakkenberg et al.), etc.



RQ3: Visual Frontend for Explanation

 ClassViz became a frontend for DSAR, 
summarisation, role classification.

 Graph properties → visual variables: 
colour, position, edge thickness.

 Supported ASML case study as 
explanatory interface.

 Example: coloured nodes for 
roles/layers, detail panes for 
summaries.



ClassViz in ClassViz

 Self-inspection: visualising the ClassViz 
codebase itself.

 Reveals structure, dependencies, 
module roles.

 Also gives feedback on design (e.g., 
overcentralisation of utils).



Reflection

 ClassViz shows how small tools can evolve into research infrastructure.

 Emphasises:

 Pragmatism over polish

 Open architecture over rigid features

 Useful not just to show results, but to discover and shape them.



Live Demo

https://satrio.rukmono.id/classviz/?p=jhotdraw-5.1

https://satrio.rukmono.id/classviz/?p=jhotdraw-5.1
https://satrio.rukmono.id/classviz/?p=jhotdraw-5.1
https://satrio.rukmono.id/classviz/?p=jhotdraw-5.1

	Slide 1: ClassViz: From Inspection Tool to Research Vessel
	Slide 2: Why Visualisation?
	Slide 3: Research Questions … ?
	Slide 4: RQ1: Lightweight Visual Inspection
	Slide 5
	Slide 6: RQ2: Adoption & Extension
	Slide 7: RQ3: Visual Frontend for Explanation
	Slide 8: ClassViz in ClassViz
	Slide 9: Reflection
	Slide 10: Live Demo

