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Introduction

● Energy usage of processes and products of software development.

● With third-party APIs, there are data privacy issues, and cost concerns

● Interest in locally deploying (open weight) language models.

● Challenges:

○ High energy consumption of LLMs

○ Difficulty running even modest-sized LLMs without a powerful GPU

○ Choosing the right model for your needs
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To investigate the energy consumption of 
(open weight) LLMs during inference in 
some software development tasks: code 
generation, bug fixing, docstring 
generation, and test case generation.

Goal
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Methodology

● Runtime framework: Ollama

● Models Evaluated: 18 model families, general-purpose and code-specific (quantized and full-precision)

Codellama (7b-13b) Llama2 (7b-13b)

Codegemma (7b) Gemma (2b-7b)

Deepseek-coder (1.3b-6b) Deepseek-llm (7b)

Starcoder2 (15b) Llama3 (8b)

Granite-code (3b-8b-20b) Mistral (7b)

Phi3 (3.8b-14b)
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● Accuracy:

○ Pass@1 for Code Generation, Bug Fixing, Docstring Generation

○ Test Coverage and Test Correctness for Test Generation

● Hyperparameters: temperature = 0.1, top-p = 0.95

● Energy usage: PyRAPL, PyNVML libraries for CPU and GPU

● Energy: Energy usage (Wh) and efficiency (tokens/J).
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Methodology
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RQ1
Energy Usage Across 
Four Tasks
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Result (RQ1)

Mean Value of Energy: Code Generation = 13.46Wh, Bug Fixing = 29.69Wh, 
Test Generation = 37.94Wh, and Docstring Generation = 19.12Wh
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Result (RQ1)
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RQ2
Energy vs. Accuracy 
Trade-Offs



Result (RQ2: Energy vs. Accuracy Trade-Offs)
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Result (RQ2: Energy vs. Accuracy Trade-Offs)
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Result (RQ2: Energy vs. Accuracy Trade-Offs)
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For Energy and Accuracy, it’s not necessarily a trade-off
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RQ3 
Model Characteristics
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Spearman’s correlation 
matrix for all models 
across all tasks on 
GPU A100
(p − value < 0.0016)

Result (RQ3: Model Characteristics)



Result (RQ3: Model Characteristics)
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Models with larger 
number of parameters 
need more energy to 
generate an output 
token.



Result (RQ3: Model Characteristics)

35

But they do not 
necessarily produce 
more accurate results.
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RQ4 
Code-Specific LLMs vs. 
General-Purpose LLMs



Result (RQ4: Code-Specific vs. General-Purpose)

● Excluding energy usage, coding-specific LLMs exhibit better mean accuracy than 

general-purpose LLMs

● Considering energy usage, general models appear among pareto frontiers.

Coding models should be designed to be both accurate and energy-efficient.
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Further Analysis

E = β0 + β1P + β2O + β3W + ... + β4I + ε
40

Parameter count 
matters for energy 
efficiency

Active parameter 
count matters more



Further Analysis

E = β0 + β1P + β2O + β3W + ... + β4I + ε
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Active Parameters Output Length Bit Width



Further Analysis
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● Active Parameter  

count,  Output tokens, 

and bit Width combined 

have high explanatory 

power for Energy usage 

● Weights vary per task



On the energy efficiency of LLMs in four software development tasks

1. For energy and accuracy, it does not need to be a trade-off

2. (Active) parameter count has a strong connection to energy 

efficiency. Not so much to accuracy

3. The combination of Parameter count, Output length and bit 

Width is a good predictor for energy usage
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Main Takeaways



Thank You!
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