

The Cost of Al-Assisted Coding:

Energy vs. Accuracy in Language Models

Negar Alizadeh, Boris Belchev, Nishant Saurabh, Patricia Kelbert,

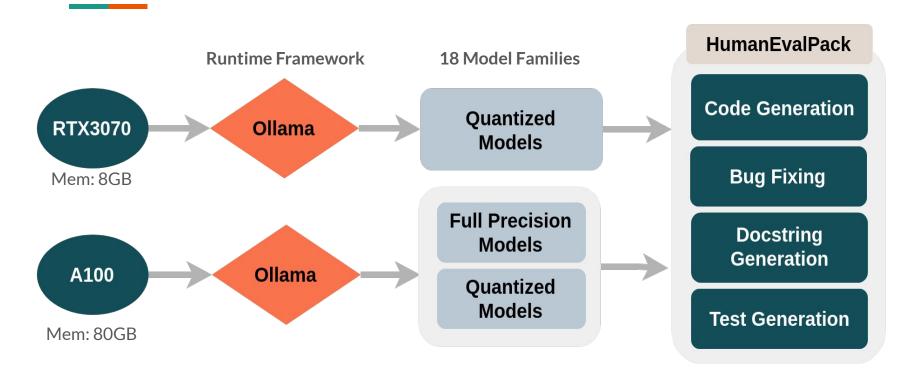
BENEVOL 2025

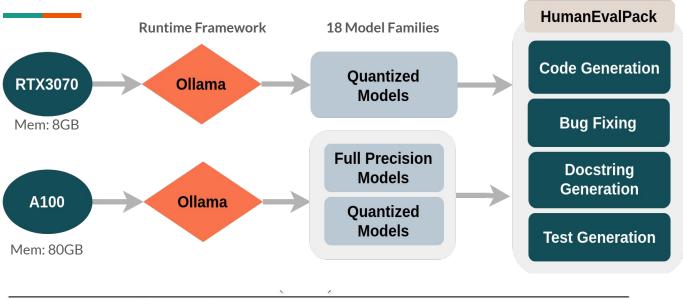
Introduction

- Energy usage of processes and products of software development.
- With third-party APIs, there are data privacy issues, and cost concerns
 - Interest in locally deploying (open weight) language models.
- Challenges:
 - High energy consumption of LLMs
 - Difficulty running even modest-sized LLMs without a powerful GPU
 - Choosing the right model for your needs

Goal

To investigate the energy consumption of (open weight) LLMs during **inference** in some software development tasks: code generation, bug fixing, docstring generation, and test case generation.





CPU: 2 × AMD 7313 - 3GHz — Mem: 1TB — Cache: 32MB A100

— Governer: Performance

GPU: NVIDIA A100 PCIe — Mem: 80GB — PowerMizer: High

Performance

OS: AlmaLinux 8.10 (64-bit)

- Runtime framework: Ollama
- Models Evaluated: 18 model families, general-purpose and code-specific (quantized and full-precision)

<u>U</u>
Ë
0
ď
\ <u>\</u>
<u>a</u>
0
Ŭ

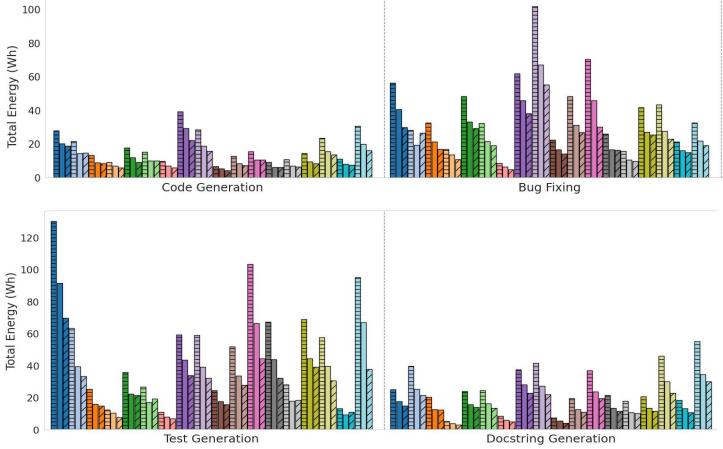
Codellama (7b-13b)	Llama2 (7b-13b)
Codegemma (7b)	Gemma (2b-7b)
Deepseek-coder (1.3b-6b)	Deepseek-Ilm (7b)
Starcoder2 (15b)	Llama3 (8b)
Granite-code (3b-8b-20b)	Mistral (7b)
Phi3 (3.8b-14b)	

General-Purpose

- Accuracy:
 - Pass@1 for Code Generation, Bug Fixing, Docstring Generation
 - Test Coverage and Test Correctness for Test Generation
- **Hyperparameters:** temperature = 0.1, top-p = 0.95
- Energy usage: PyRAPL, PyNVML libraries for CPU and GPU
- **Energy:** Energy usage (Wh) and efficiency (tokens/J).

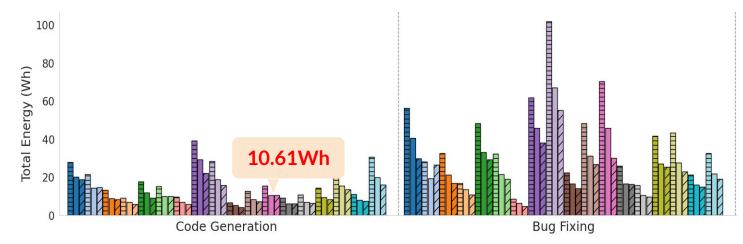
RQ1 Energy Usage Across Four Tasks

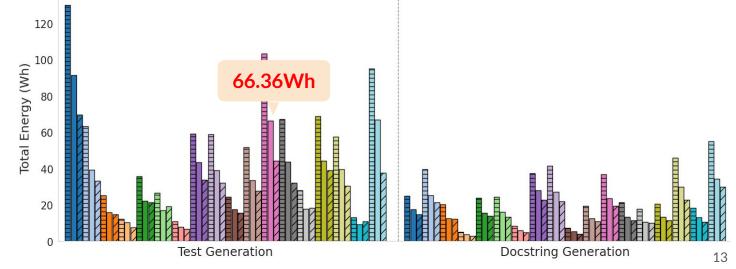
Result (RQ1)



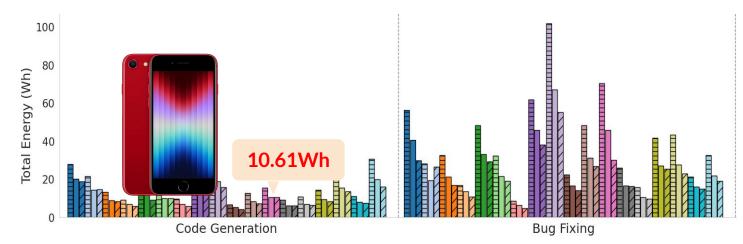
Mean Value of Energy: Code Generation = 13.46Wh, Bug Fixing = 29.69Wh, Test Generation = 37.94Wh, and Docstring Generation = 19.12Wh

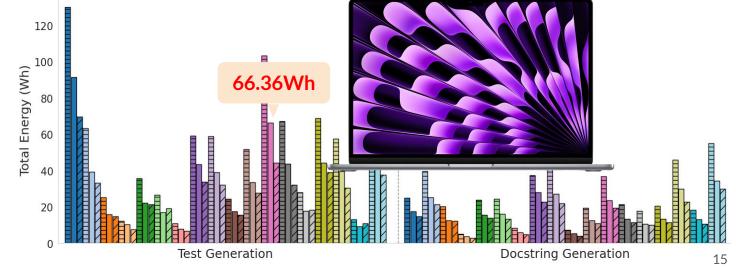
Result (RQ1)





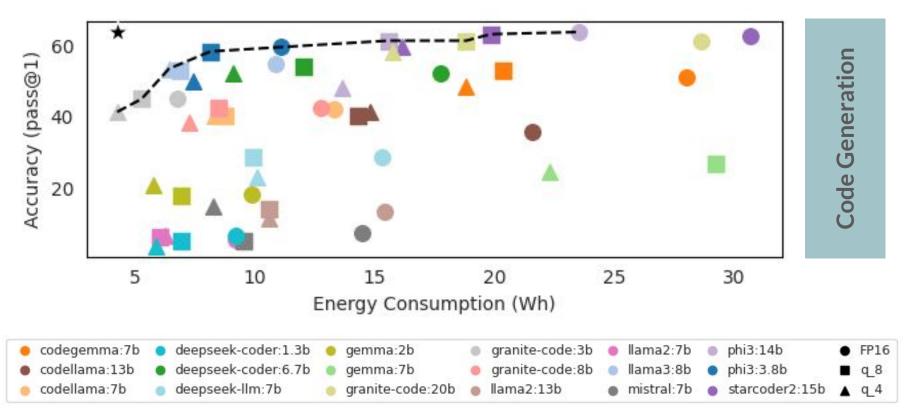
Result (RQ1)

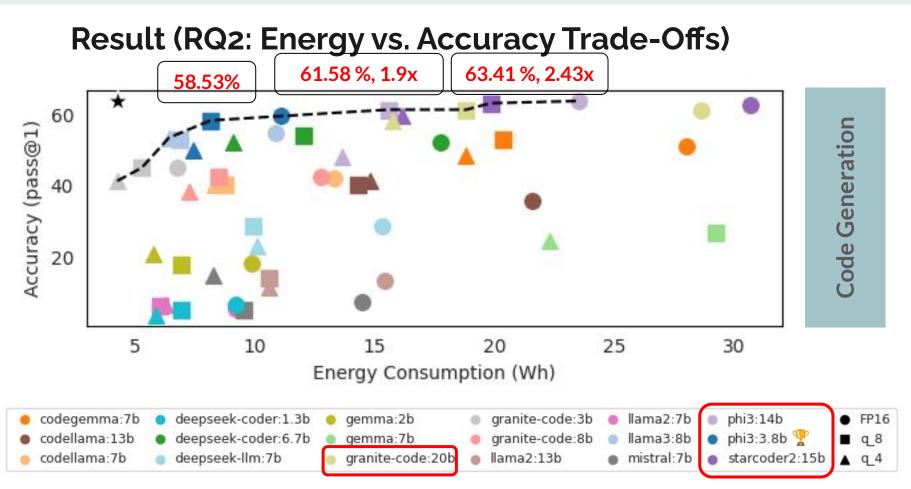




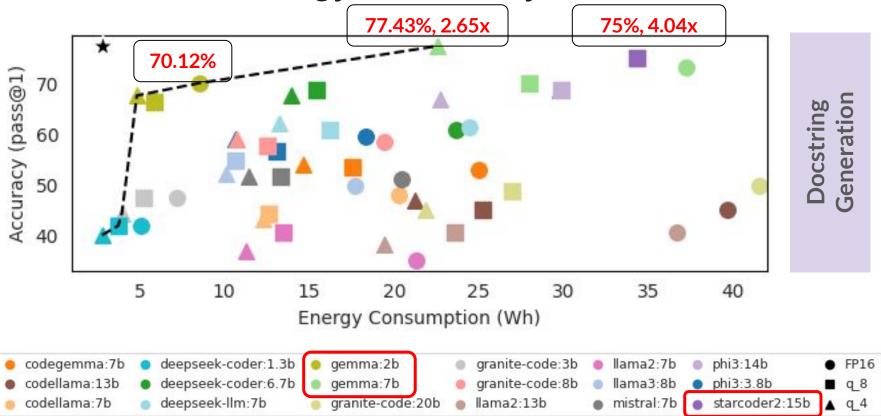
RQ2 Energy vs. Accuracy Trade-Offs

Result (RQ2: Energy vs. Accuracy Trade-Offs)

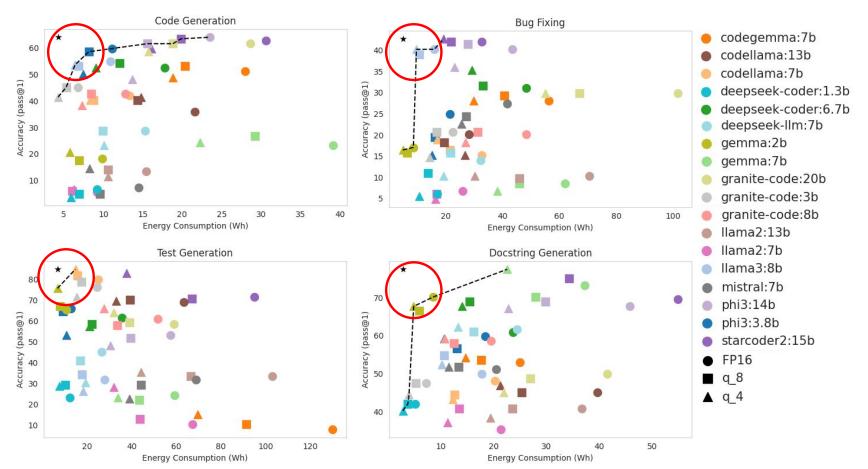




Result (RQ2: Energy vs. Accuracy Trade-Offs)



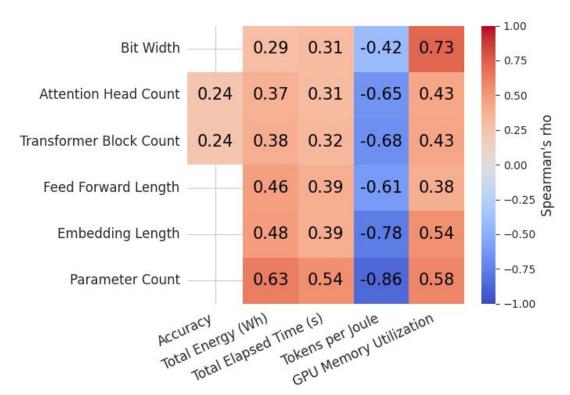
For Energy and Accuracy, it's not necessarily a trade-off



RQ3 Model Characteristics

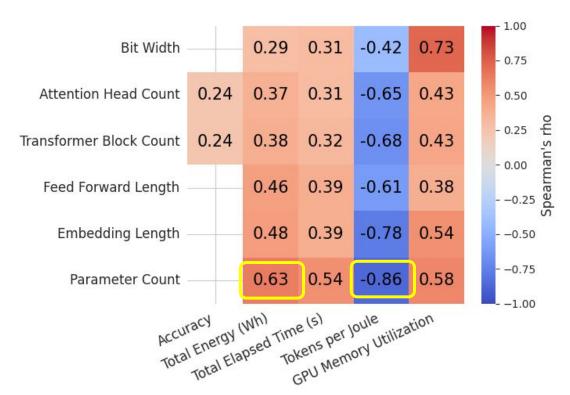
Result (RQ3: Model Characteristics)

Spearman's correlation matrix for all models across all tasks on GPU A100 (p - value < 0.0016)



Result (RQ3: Model Characteristics)

Models with larger number of parameters need more energy to generate an output token.



Result (RQ3: Model Characteristics)

But they do not necessarily produce more accurate results.

RQ4 Code-Specific LLMs vs. General-Purpose LLMs

Result (RQ4: Code-Specific vs. General-Purpose)

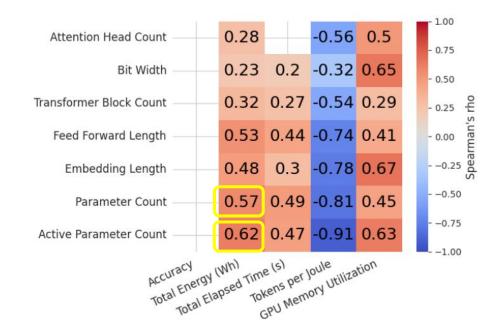
- Excluding energy usage, coding-specific LLMs exhibit better mean accuracy than general-purpose LLMs
- Considering energy usage, general models appear among pareto frontiers.

Coding models should be designed to be both accurate and energy-efficient.

Further Analysis

Parameter count matters for energy efficiency

Active parameter count matters more



$$E = \beta o + \beta 1P + \beta 2O + \beta 3W + ... + \beta 4I + \epsilon$$

Further Analysis

$$E = \beta o + \beta 1 P + \beta 2 O + \beta 3 W + ... + \beta 4 I + \epsilon$$

Active Parameters

Output Length

Bit Width

Further Analysis

- Active Parameter
 count, Output tokens,
 and bit Width combined
 have high explanatory
 power for Energy usage
- Weights vary per task

Code Generation					
Coefficient (β)	SE	p-value	R^2	Adj. R^2	
7.5049	0.600	< 0.001			
-0.3033	0.462	0.511			
4.6003	1.695	0.007	0.743	0.729	
5.2472	0.551	< 0.001			
3.4057	0.429	< 0.001			
	Coefficient (β) 7.5049 -0.3033 4.6003 5.2472	Coefficient (β)SE7.50490.600-0.30330.4624.60031.6955.24720.551	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Bug Fixing

Predictor	Coefficient (β)	SE	p-value	R^2	Adj. R^2
Intercept	16.6326	1.348	< 0.001		
Input Tokens $_{std}$	-2.3272	1.069	0.029		
Output Tokens $_{std}$	9.2888	2.429	< 0.001	0.798	0.786
Parameter Count _{std}	13.2138	1.456	< 0.001		
Quantization Level	7.7707	1.070	< 0.001		

Docstring Generation

Predictor	Coefficient (β)	\mathbf{SE}	p-value	R^2	Adj. R^2
Intercept	9.9995	0.826	< 0.001		
Input Tokens $_{std}$	-0.0611	0.574	0.915		
Output Tokens $_{std}$	3.6721	0.656	< 0.001	0.900	0.895
Parameter $Count_{std}$	7.3851	0.628	< 0.001		
Quantization Level	5.1572	0.669	< 0.001		

Test Generation

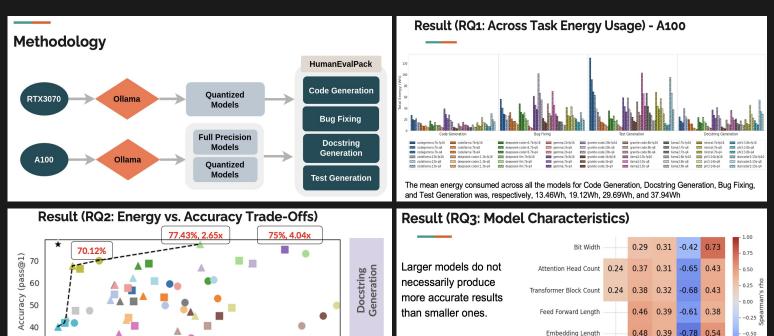
Predictor	Coefficient (β)	SE	p-value	R^2	Adj. R^2
Intercept	20.5233	1.779	< 0.001		
Input Tokens $_{std}$	0.7161	1.316	0.586		
Output Tokens $_{std}$	14.8815	1.440	< 0.001	0.880	0.873
Parameter $Count_{std}$	13.9443	1.790	< 0.001		
Quantization Level	10.4284	1.351	< 0.001		

Main Takeaways

On the energy efficiency of LLMs in four software development tasks

- 1. For energy and accuracy, it does not need to be a trade-off
- 2. (Active) parameter count has a strong connection to energy efficiency. Not so much to accuracy
- 3. The combination of Parameter count, Output length and bit Width is a good predictor for energy usage

Thank You!



-0.75

0.54 -0.86 0.58

Tokens per Joule

Total Elapsed Time (s)

Parameter Count

Negar Alizadeh (n.s.alizadeh@uu.nl)

35

40

mistral:7b
 starcoder2:15b
 q 4

■ q_8

5

codellama:7b

10

deepseek-llm:7b

15

deepseek-coder:1.3b
 gemma:2b

20

Energy Consumption (Wh)

granite-code:20b | llama2:13b

25

granite-code:3b

30