
Pre-proceedings of

BENEVOL 2025
The 24th Belgium-Netherlands Software Evolution Workshop

17–18 November 2025
Enschede, The Netherlands

Editors: Vadim Zaytsev, Fernando Castor.

Preface
The goal of BENEVOL has always been to bring together researchers who are working in the field of
software evolution and maintenance. In addition to flagship venues like ICSME and SANER and other
publication-oriented venues like ICPC, MSR, SCAM or SAC, the workshop nature of BENEVOL offers an
informal forum to meet and discuss new ideas, relevant problems, and fresh research results.

This year we have welcomed submissions in the following four categories:

Cutting-edge Original Research on Evolution (CORE)
Full-length technical papers presenting original research which has been already empirically or formally
validated. We also welcome papers in the early stages of their development that would benefit from
feedback from the community.

Disruptive Ideas and Visionary Explorations (DIVE)
Position papers presenting new and potentially controversial software maintenance and evolution per-
spectives. Such papers may not have an evaluation, though illustrative examples and cases are welcome.

Reproduced, Examined, or Analysed Papers (REAP)
The growing complexity and size of software systems combined with the rise of machine learning for
maintenance and evolution tasks makes replicability challenging. We invite replication efforts of existing
papers, describing successes (replicated), difficulties (invalidated), or refinements (of any kind). This
category extends to new negative results, which are key to narrowing down hypotheses.

Summary of Highlights and Outstanding Work (SHOW)
Presentation abstracts, progress reports, research results without inclusion in the proceedings. SHOW
papers cover research that has already been accepted for publication, is being reviewed to be published,
or is almost ready to be submitted to a conference or a journal.

All papers were submitted under a single-blind no-rebuttal reviewing model. SHOW papers were reviewed
for thematic relevance, others were distributed among the reviewers in a way that each CORE, DIVE
and REAP paper would get at least three reviews, assessing the adherence to the workshop’s scope
(maintenance and evolution) as well as the expectations of the categories.

We have received 22 submissions (5 CORE, 1 REAP, 6 DIVE, 10 SHOW), out of which 20 were accepted (1
CORE and 1 DIVE rejected). They came from 53 authors from 7 countries (The Netherlands, Belgium,
Spain, Japan, US, Switzerland, Germany), and were reviewed by 20 programme committee members (see
next page).

Vadim Zaytsev
General Chair

BENEVOL 2025

1

Programme Committee
⋄ Alexander Nolte, Eindhoven University of Technology, Netherlands

⋄ Alexander Serebrenik, Eindhoven University of Technology, Netherlands

⋄ Alexandre Decan, University of Mons, Belgium

⋄ Ana-Maria Oprescu, University of Amsterdam, Netherlands

⋄ Andrea Capiluppi, University of Groningen, Netherlands

⋄ Anne Etien, University of Lille, France

⋄ Carolin Brandt, Delft University of Technology, Netherlands

⋄ Coen De Roover, Vrije Universiteit Brussel, Belgium

⋄ Daniel Feitosa, University of Groningen, Netherlands

⋄ Gregorio Robles, Universidad Rey Juan Carlos, Spain

⋄ Fernando Castor, University of Twente, Netherlands (chair)

⋄ Johan Fabry, Raincode Labs, Belgium

⋄ Lina Ochoa-Venegas, Eindhoven University of Technology, The Netherlands

⋄ Mairieli Wessel, Radboud University, Netherlands

⋄ Marcus Gerhold, University of Twente, Netherlands

⋄ Ruben Opdebeeck, Vrije Universiteit Brussel, Belgium

⋄ Serge Demeyer, Universiteit Antwerpen (ANSYMO), Belgium

⋄ Siamak Farshidi, Wageningen University and Research, Netherlands

⋄ Slinger Jansen, Utrecht University, Netherlands

⋄ Vincenzo Stoico, Vrije Universiteit Amsterdam

2

Table of Contents

Preface 1
Programme Committee 2
Table of Contents 3–4

Section “Efficiency and Intelligence in Code Generation”
(DIVE) An Introduction to Indirect Code Completion 5–10

Nhat and Vadim Zaytsev
(SHOW) Same Size, Different Costs: Phase-Level Energy Variations in Transformer Models 11-12

during Code Generation
Lola Solovyeva

(SHOW) The Cost of AI-Assisted Coding: Energy vs. Accuracy in Language Models 13–15
Negar Alizadeh, Boris Belchev, Nishant Saurabh, and Patricia Kelbert

(DIVE) Bridging CPU and GPU in Rust 16–21
Niek Aukes, Cristian-Andrei Begu, and Georgiana Caltais

Section “Mining and Modelling of Software Knowledge”
(SHOW) Sampling Threat when Mining Generalizable Inter-Library Usage Patterns 22–23

Yunior Pacheco, Coen De Roover, and Johannes Härtel
(SHOW) An Analysis of Code Clones in GitHub Actions Workflows 24–25

Guillaume Cardoen, Alexandre Decan, and Tom Mens
(SHOW) A Method for Inferring Python Proficiency from Textbooks 26–27

Ruksit Rojpaisarnkit, Gregorio Robles, Jesús M. González-Barahona,
Kenichi Matsumoto, and Raula Gaikovina Kula

(CORE) BRIDGE: Building Reliable Interfaces for Developer Guidance and Exploration 28–36
through Static Analysis and LLM Translation
Krishna Narasimhan and Mairieli Wessel

(SHOW) On the Automation and Reuse Practices in GitHub Actions: 37–38
Results of a Qualitative Survey
Hassan Onsori Delicheh, Guillaume Cardoen, Alexandre Decan, and Tom Mens

Section “Structure and Visualisation in Evolving Software Systems”
(DIVE) On the Structuring of LATEX Projects 39-45

Wouter ten Brinke, Bart Griepsma, Aleksandra Ignatovič, Nhat,
and Vadim Zaytsev

(DIVE) ClassViz: From Verification Tool to Research Vessel 46-52
Satrio Adi Rukmono

(CORE) Pseudonymization as a Service: Compartmentalizing and Controlling 53–66
Data Processing in Evolving Systems with Micropseudonymization
Job Doesburg, Bernard van Gastel, and Erik Poll

3

Section “Evolving Software Ecosystems”
(CORE) On the Evolution of Direct Dependencies in npm Packages 67–78

Shahin Ebrahimi-Kia, Jesús M. González-Barahona, David Moreno-Lumbreras,
Gregorio Robles, and Tom Mens

(SHOW) An Empirical Analysis of the GitHub Actions Language Usage and Evolution 79–80
Aref Talebzadeh Bardsiri, Alexandre Decan, and Tom Mens

(SHOW) Language-Level Support for Multiple Versions for Software Evolution 81–82
Tomoyuki Aotani, Satsuki Kasuya, Luthfan Lubis, Hidehiko Masuhara, and
Yudai Tanabe

(SHOW) On the Transferability of a Bot Detection Model from GitHub to GitLab 83–84
Cyril Moreau

(SHOW) Evolution-Resilient Class Contours 85–86
Mattia Giannaccari and Marco Raglianti

Section “Software Testing”
(DIVE) Preliminary survey on CPS testing in various domains of the industry 87-94

Guillaume Nguyen and Xavier Devroey
(CORE) FlaDaGe: A Framework for Generation of Synthetic Data to Compare 95–113

Flakiness Scores
Mert Ege Can, Joanna Kisaakye, Mutlu Beyazıt, and Serge Demeyer

(REAP) Evaluating Test-Driven Code Generation: A Replication Study 114–124
Giovanni Rosa and Jesús Maria González-Barahona

4

An Introduction to Indirect Code Completion
Nhat1, Vadim Zaytsev1

1Formal Methods & Tools (FMT), University of Twente, Enschede, The Netherlands

Abstract
Code completion plays a vital role in enhancing software development productivity and quality. It has evolved
from simple spell checkers to advanced AI-powered tools, yet the core principle remains the same: to provide code
suggestions directly where the completion was initiated. In this paper, we proposed to generalise it to indirect code
completion (ICC), which can be initiated in one place while having suggestions proposed elsewhere. By analysing
the structure and properties of ICC in the context of object-oriented languages, we identified several properties
that can be used to characterise ICC. We also introduced a set of questions and a taxonomy to categorise ICC into
over 20 different application patterns.

Keywords
code completion, coding context

1. Introduction and Background

The “type less, write more” idea has become familiar to most developers, with applications ranging from
query completion in modern search engines based on popular queries, to character suggestions when
typing in languages with thousands of characters. For code, completion, when triggered, commonly
appears in the form of a list of suggestions based on the user’s prompt and the surrounding context. The
earliest code completion (CC) systems are merely spell checkers [1] by today’s standards. Modern CC
systems can also collect and prioritise suggestions of words that already appeared in the file/codebase [2].
This led to inspection systems that perform syntactic and semantic analysis on the codebase to gain an
understanding of the code to provide richer and more contextually relevant completions.

Code completion has become a norm, an expectation, and a reliance for modern IDEs and code
editors to have a CC system that can offer correct types, variables, fields, methods, classes, and other
language-specific constructs. Today, this kind of modern code completion is commonly known as
intelligent code completion, code suggestion, code prediction, auto-completion, etc., depending on
the provider. It significantly enhances the coding experience and productivity, while improving code
quality by increasing efficiency and accuracy, promoting discoverability, reducing cognitive load and
enhancing focus, and encouraging consistency and best practices.

Machine learning (ML) and artificial intelligence (AI) have been recently and rapidly integrated into
CC solutions, such as GitHub Copilot or JetBrains AI Assistant. Even for these intelligent systems, the
core principle of most, if not all, CC remains the same: to provide suggestions for relevant code elements
directly where the CC was initiated. For example, the following code could have three consecutive CC
events, with the user-written completion prompts in blue and IDE-proposed completion edit in red:

1 pizzaBuilder.withCrust().withSalami().withGarlic() ^// RawPizza

2 .bake()∣ ^// BakedPizza

3

4 pizzaBuilder.withCrust().withSalami().withGarlic() ^// RawPizza

5 .bake().slice()∣ ^// ReadyPizza

6

7 pizzaBuilder.withCrust().withSalami().withGarlic()

8 .bake().slice().serve()∣

BENEVOL’25: Belgium-Netherlands Software Evolution Workshop 2025, November 17–18, 2025, Enschede, The Netherlands
Envelope-Open research@nhat.run (Nhat); vadim@grammarware.net (V. Zaytsev)
GLOBE https://grammarware.net/ (V. Zaytsev)
Orcid 0009-0004-3110-9946 (Nhat); 0000-0001-7764-4224 (V. Zaytsev)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1

Nhat et al. CEUR Workshop Proceedings 1–6

Instead, we could think of the following one event that can produce the same result:

1 pizzaBuilder.withCrust().withSalami().withGarlic()

2 .bake().slice().serve()∣

Here, in green, we denoted the target of the completion: that is, the place where the edit is aiming at.
While not necessarily winning in keystrokes, this bridge ICC event supports the developers in letting
them focus on the essentials while it can add the necessary. Another example could be an insert ICC
event that allows the user to add another topping without moving the caret:

1 pizzaBuilder.withCrust().withSalami().withGarlic()

2 .bake().slice().serve().withHam∣
3

4 pizzaBuilder.withCrust().withSalami().withGarlic().withHam()

5 .bake().slice().serve()∣

Collectively, we call these kinds of code completion indirect code completion (ICC), as opposed to
the traditional direct code completion (DCC) where the edit is applied directly at the location of the caret.
In the following sections, we will explore in more detail how ICC can minimise developer’s distractions
by performing completions elsewhere without navigating to the target place first. This example merely
serves as a motivation, but style-wise besides the (already popular) builder pattern, it is also applicable
to the fluent interface design pattern for its extensive use of method chaining and method cascading.

While it is simple to jump to the beginning or the end of a line (e.g., using the Home or End key),
moving the caret to some specific location requires intention and finesse, potentially disrupting the
flow [3]. Caret movement is a frequent and basic action yet often taken for granted. It is usually done
with a mouse pointer for IDEs with a graphical interface or by a combination of modes, commands,
shortcuts, and controls for purely textual ones. For the latter, it is worth noting that these cursor controls
in Vim or Emacs mostly involve jumping back or forth a number of characters, words, sentences, lines,
or paragraphs, — all constructs of natural languages, not programming ones.

Indirect code competition provides a quick and simple way to make indirect edits in conceptually
related places and reduce caret jumpswhile writing code. With ICC, a sequence of direct code completion
and navigation events can be replaced with a single ICC event, enhancing productivity while reducing
time, errors, and cognitive load. By allowing suggestions that are not bound to the initiated location,
ICC can have more opportunities to complete and support the coding process.

In this paper, we present our approach and analysis of the structure and properties of indirect
code completion in § 2, specifically focusing on the context of object-oriented languages. Using these
properties as a base, a comprehensive taxonomy for different categories of ICC is defined. § 4 concludes
the paper with some remarks and future research possibilities. Although some early evaluation of
ICC has been conducted with promising results (and can be shared during the workshop), a more
comprehensive evaluation is left for future work and is not included in this paper.

2. Categories of Indirect Code Completion

This section explains our approach to investigating the concept of indirect code completion for object-
oriented languages. Let us define a member 𝑓 of the type (class, module, package) 𝑇 as 𝑇 .𝑓 (𝑃) → 𝑅, if
its arguments are 𝑃 and its return type is 𝑅. In some cases when this is important, we will write out all
arguments individually: 𝑇 .𝑓 (𝑃0, 𝑃1, … , 𝑃𝑘) → 𝑅 for some 𝑘 ∈ ℕ.

If these elements are to be chained, then we can have a series of 𝑇𝑖.𝑓𝑖 for which 𝑅𝑖 ≡ 𝑇𝑖+1, and write the
chain down as 𝑇0.𝑓0(𝑃0) → 𝑇1.𝑓1(𝑃1) → 𝑇2…𝑇𝑛.𝑓𝑛(𝑃𝑛) → 𝑅𝑛 or even as 𝑇0.𝑓0 → 𝑇1.𝑓1 → 𝑇2…𝑇𝑛.𝑓𝑛 → 𝑅𝑛
if parameters are not important. To identify and categorise the possible kinds of ICC, let us examine
the following element chain with a hypothetical ICC:

𝑓0.𝑓1…𝑓𝑖.𝑔.𝑓𝑖+1…𝑓𝑛.𝑥∣.𝑓𝑛+1…𝑓𝑛′ (1)

2

Nhat et al. CEUR Workshop Proceedings 1–6

In the above chain (1), a completion prompt 𝑥 is provided by the user in the middle of the chain
after the element 𝑓𝑛. For simplicity’s sake, the remaining elements from 𝑓𝑛+1 onward are temporarily
ignored. Here, 𝑥 is prompted with the intention to make a completion edit 𝑔 after the target element 𝑓𝑖.

Consider a completion edit 𝑔. In direct code completion, the completion edit is almost always closely
related to the completion prompt 𝑥, typically based on the element’s name. For instance, given a
completion prompt toStr, a logical completion edit that the user aimed for could be toString, which
starts with the same characters. However, 𝑔 does not always need to be closely related to 𝑥 and can be
fresh as we have seen from the motivational example before.

The idea of ICC is based on the ability to complete a piece of code that is not directly at the position
where the CC was initiated. In that sense, to be indirect, the completion edit 𝑔 needs to be at a certain
distance to the completion prompt 𝑥.

In the specific case in (1), the completion edit 𝑔 is placed between the elements 𝑓𝑖 and 𝑓𝑖+1. I.e., the
completion action was to insert 𝑔 after the target element 𝑓𝑖, leaving all original elements intact. An
alternative completion action could have been to replace 𝑓𝑖 with 𝑔 instead of inserting it. Finally, the
target element could also be used as an argument for 𝑔: this wrapping action results in 𝑔(𝑓𝑖).

Until now, an ICC only targets one element 𝑓𝑖. The range of the target, however, is not limited to one.
Instead of 𝑓𝑖, a sequence of elements 𝑓𝑖…𝑓𝑖+𝑗 can be targeted as once, e.g., with the wrapping action:

𝑓0.𝑓1…𝑓𝑖−1.𝑔(𝑓𝑖…𝑓𝑖+𝑗).𝑓𝑖+𝑗+1…𝑓𝑛.𝑥∣.𝑓𝑛+1…𝑓𝑛′ (2)

Similarly, this generalisation also holds for the completion edits. A completion edit can also consist
of a sequence of elements 𝑔0…𝑔𝑚 of a length greater than one. An example of this with the replace
action could be:

𝑓0.𝑓1…����𝑓𝑖…𝑓𝑖+𝑗𝑔0…𝑔𝑚.𝑓𝑖+𝑗+1…𝑓𝑛.𝑥∣.𝑓𝑛+1…𝑓𝑛′ (3)

As can be observed from the above chains, the ICCs targeted elements backward to the completion
prompt 𝑥, given the writing direction is from left to right. Let us turn focus to the previously ignored tail
elements of the chain, i.e., in the forward direction. Similarly, all the previously defined properties also
hold for the forward direction, with one exception being that the completion prompt is now effectively
prepended to the tail chain. For example, the following chain is a forward version of (3):

𝑓0…𝑓𝑛.𝑥∣.𝑓𝑛+1.𝑓𝑛+2…����𝑓𝑖…𝑓𝑖+𝑗𝑔0…𝑔𝑚.𝑓𝑖+𝑗+1…𝑓𝑛′ (4)

More compactly, both backward (3) and forward (4) ICC can be represented together using the
under-arrows (e.g., 𝑥⃯⃮ for forward and 𝑥⃮⃮ for backward) to denote the completion direction relative to
where the completion was initiated, using both if both are possible starting points:

…𝑥∣⃮⃮ 𝑓⃯0.𝑓1…����𝑓𝑖…𝑓𝑖+𝑗𝑔0…𝑔𝑚.𝑓𝑖+𝑗+1…𝑓𝑛𝑥∣⃮⃮ ⃮… (5)

Collectively, these properties (target distance, target range, completion action, completion edit
freshness, completion edit length, completion direction, and depth) form the basis of the proposed ICC
categorisation. To further streamline the analysis, we gathered and organised completion properties
into a set of questions:

• What is the distance from 𝑥 to the first target 𝑓𝑖?
• What is the range of the target elements?
• What is the completion action?

• What is the freshness of the completion edit?
• What is the length of the completion edit?
• What is the completion direction relative to 𝑥?

Answering these questions results in a combination of properties, which are used to categorise
the ICC. These properties can also help distinguish between direct and indirect code completion. To
illustrate this, let us consider a simple direct code completion 𝑓0.𝑓1…𝑓𝑛.𝑥∣. Direct code completion is a
special case of CC in the forward direction with a target range of only one element 𝑓𝑛 directly before
the completion prompt 𝑥. The insert action is used by direct code completion to append a completion
edit 𝑥 of length 1 that is closely related to the completion prompt 𝑥.

3

Nhat et al. CEUR Workshop Proceedings 1–6

Table 1
Summary of indirect code completion categories for the pattern …𝑥∣⃮⃮ .⃯𝑓0.𝑓1…𝑓𝑖…𝑓𝑖+𝑗…𝑓𝑛.𝑥∣⃮⃮ ⃮…

Compl.
action

Special
case

Compl. target Compl. edit
Applied pattern

Element Range Element Param. Length

insert
— 𝑓𝑖 1 𝑥 — 1 …∣⃯𝑓0 …𝑓𝑖.𝑥.𝑓𝑖+1 …𝑓𝑛 ∣⃮…

append 𝑓𝑛 1 𝑥 — 1 …𝑓0 …𝑓𝑛.𝑥∣⃮⃯ …

fill

—
𝑓𝑖 1 𝑔 — 1 …𝑥∣⃮⃮ .⃯𝑓0 …𝑓𝑖.𝑔.𝑓𝑖+1 …𝑓𝑛.𝑥∣⃮⃮ ⃮…

𝑓𝑖 1 𝑔0 …𝑔𝑚 — 𝑚 + 1 …𝑥∣⃮⃮ .⃯𝑓0 …𝑓𝑖.𝑔0 …𝑔𝑚.𝑓𝑖+1 …𝑓𝑛.𝑥∣⃮⃮ ⃮…

bridge
𝑓0⃮⃮ ⃯ or 𝑓𝑛⃮⃮ ⃮ 1 𝑔 — 1 …𝑥∣.𝑔.𝑓0⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃯ .𝑓1 …𝑓𝑛−1.𝑓𝑛.𝑔.𝑥∣⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ …

𝑓0⃮⃮ ⃯ or 𝑓𝑛⃮⃮ ⃮ 1 𝑔0 …𝑔𝑚 — 𝑚 + 1 …𝑥∣.𝑔0 …𝑔𝑚.𝑓0⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃯ .𝑓1 …𝑓𝑛−1.𝑓𝑛.𝑔0 …𝑔𝑚.𝑥∣⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ …

displace
—

𝑓𝑖 1 𝑥 — 1 …∣⃯𝑓0 …𝑓𝑖−1.◁◁𝑓𝑖𝑥.𝑓𝑖+1 …𝑓𝑛 ∣⃮…

𝑓𝑖(𝑃𝑖) 1 𝑥 𝑃𝑖 1 …∣⃯𝑓0 …𝑓𝑖−1.◁◁𝑓𝑖𝑥(𝑃𝑖).𝑓𝑖+1 …𝑓𝑛 ∣⃮…

𝑓𝑖 …𝑓𝑖+𝑗 𝑗 + 1 𝑥 — 1 …∣⃯𝑓0 …𝑓𝑖−1.���𝑓𝑖 …𝑓𝑖+𝑗𝑥.𝑓𝑖+𝑗+1 …𝑓𝑛 ∣⃮…

discard 𝑓0 …𝑓𝑛 𝑛 + 1 𝑥 — 1 …∣⃯𝑥���𝑓0 …𝑓𝑛 or ���𝑓0 …𝑓𝑛𝑥∣⃮…

replace

—

𝑓𝑖 1 𝑔 — 1 …𝑥∣⃮⃮ .⃯𝑓0 …𝑓𝑖−1.◁◁𝑓𝑖𝑔.𝑓𝑖+1 …𝑓𝑛.𝑥∣⃮⃮ ⃮…

𝑓𝑖(𝑃𝑖) 1 𝑔 𝑃𝑖 1 …𝑥∣⃮⃮ .⃯𝑓0 …𝑓𝑖−1.◁◁𝑓𝑖𝑔(𝑃𝑖).𝑓𝑖+1 …𝑓𝑛.𝑥∣⃮⃮ ⃮…

𝑓𝑖 1 𝑔0 …𝑔𝑚 — 𝑚 + 1 …𝑥∣⃮⃮ .⃯𝑓0 …𝑓𝑖−1.◁◁𝑓𝑖𝑔0 …𝑔𝑚.𝑓𝑖+1 …𝑓𝑛.𝑥∣⃮⃮ ⃮…

𝑓𝑖 …𝑓𝑖+𝑗 𝑗 + 1 𝑔 — 1 …𝑥∣⃮⃮ .⃯𝑓0 …𝑓𝑖−1.���𝑓𝑖 …𝑓𝑖+𝑗𝑔.𝑓𝑖+𝑗+1 …𝑓𝑛.𝑥∣⃮⃮ ⃮…

𝑓𝑖 …𝑓𝑖+𝑗 𝑗 + 1 𝑔0 …𝑔𝑚 — 𝑚 + 1 …𝑥∣⃮⃮ .⃯𝑓0 …𝑓𝑖−1.���𝑓𝑖 …𝑓𝑖+𝑗𝑔0 …𝑔𝑚.𝑓𝑖+𝑗+1 …𝑓𝑛.𝑥∣⃮⃮ ⃮…

rewrite
𝑓0 …𝑓𝑛 𝑛 + 1 𝑔 — 1 …𝑥∣⃮⃮ .⃯𝑔���𝑓0 …𝑓𝑛 or ���𝑓0 …𝑓𝑛𝑔.𝑥∣⃮⃮ ⃮…

𝑓0 …𝑓𝑛 𝑛 + 1 𝑔0 …𝑔𝑚 — 𝑚 + 1 …𝑥∣⃮⃮ .⃯𝑔0 …𝑔𝑚���𝑓0 …𝑓𝑛 or ���𝑓0 …𝑓𝑛𝑔0 …𝑔𝑚.𝑥∣⃮⃮ ⃮…

expand
𝑥 1 𝑔 — 1 …𝑓0 …𝑓𝑛.◁𝑥𝑔∣⃮⃮ ⃮⃯ …

𝑥 1 𝑔0 …𝑔𝑚 — 𝑚 + 1 …𝑓0 …𝑓𝑛.◁𝑥𝑔0 …𝑔𝑚∣⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃯…

wrap
—

𝑓𝑖 1 𝑥 𝑓𝑖 1 …∣⃯𝑓0 …𝑓𝑖−1.𝑥(𝑓𝑖).𝑓𝑖+1 …𝑓𝑛 ∣⃮…

𝑓𝑖 …𝑓𝑖+𝑗 𝑗 + 1 𝑥 𝑓𝑖 …𝑓𝑖+𝑗 1 …∣⃯𝑓0 …𝑓𝑖−1.𝑥(𝑓𝑖 …𝑓𝑖+𝑗).𝑓𝑖+𝑗+1 …𝑓𝑛 ∣⃮…

surround 𝑓0 …𝑓𝑛 𝑛 + 1 𝑥 𝑓0 …𝑓𝑛 1 …∣⃯𝑥(𝑓0 …𝑓𝑛) or 𝑥(𝑓0 …𝑓𝑛)∣⃮…

reshape

—
𝑓𝑖 1 𝑔 𝑓𝑖 1 …𝑥∣⃮⃮ .⃯𝑓0 …𝑓𝑖−1.𝑔(𝑓𝑖).𝑓𝑖+1 …𝑓𝑛.𝑥∣⃮⃮ ⃮…

𝑓𝑖 …𝑓𝑖+𝑗 𝑗 + 1 𝑔 𝑓𝑖 …𝑓𝑖+𝑗 1 …𝑥∣⃮⃮ .⃯𝑓0 …𝑓𝑖−1.𝑔(𝑓𝑖 …𝑓𝑖+𝑗).𝑓𝑖+𝑗+1 …𝑓𝑛.𝑥∣⃮⃮ ⃮…

adapt 𝑓0 …𝑓𝑛 𝑛 + 1 𝑔 𝑓0 …𝑓𝑛 1 …𝑥∣⃮⃮ .⃯𝑔(𝑓0 …𝑓𝑛) or 𝑔(𝑓0 …𝑓𝑛).𝑥∣⃮⃮ ⃮…

fit 𝑥 1 𝑔 𝑥 1 …𝑓0 …𝑓𝑛.𝑔(𝑥)∣⃮⃮ ⃮⃮ ⃮⃮ ⃮⃯ …

Tab. 1 summarises the different categories of ICC: we primarily categorise ICCs by the completion
action, then the targeted element(s), and by the completion edit. In some categories, special cases can
be identified by a certain combination of properties. For each category, there can be some variants that
differ in the distance, range, length, and direction of the completion.

Let us take a closer look at Insert, one of the simplest kinds of ICC. In this category, a completion edit
𝑥 closely related to the completion prompt 𝑥 is inserted into the chain after the target element 𝑓𝑖, leaving
all the original elements in the chain intact. An example of insert ICC was shown in the introduction.
More formally, an insert ICC can be written as 𝑓0.𝑓1…𝑓𝑖.𝑥.𝑓𝑖+1…𝑓𝑛.∣𝑓𝑛+1…𝑓𝑛′ .

Here, 𝑥 can only be chained between 𝑓𝑖 and 𝑓𝑖+1, if the insertion of 𝑥 can maintain the type flow of the
chain, i.e., 𝑥 must also be a member of 𝑅𝑖 and 𝑓𝑖+1 is a member of 𝑇𝑥. When 𝑖 = 𝑛, the completion edit 𝑥
is inserted at the exact place where the completion was initiated, effectively a direct code completion.

4

Nhat et al. CEUR Workshop Proceedings 1–6

One can analyse and define other categories of ICC similarly, which, in the interest of space, we will
leave up to the reader. As for a brief overview, fill is similar to insert, but the completion edits are fresh
elements 𝑔/𝑔0…𝑔𝑚. As a special case of fill, bridge fills the gap between the completion prompt 𝑥 and
the adjacent target element, as was also seen in the motivating example. Instead of just inserting an
element after, displace and replace also remove the target element(s), effectively displacing/replacing
them with the completion edit 𝑥 or 𝑔/𝑔0…𝑔𝑚 respectively, optionally inherit the parameter 𝑃𝑖 of the
target. Discard and rewrite are special cases of displace and replace that remove the entire head or tail,
depending on the completion direction. Expand is another special case of replace that targets the prompt
𝑥 itself. A different pair of completion actions are wrap and reshape; Instead of removing, they consider
the target element(s) as arguments for their completion edit 𝑥 or 𝑔 respectively, with the special cases
surround and adapt that targeting the entire head or tail, depending on the completion direction. An
even more special case fit that targets the completion prompt 𝑥 itself.

3. Related Work

Numerous approaches have been proposed to expand code completion in various dimensions [4, 5, 6].
However, none of these studies investigate the idea of completing the code indirectly. The closest
approaches to ICC are template-based completion techniques.

One of the most common template-based completion techniques is code snippet generation/comple-
tion. In Visual Studio (Code), snippets [7] are part of IntelliSense [8]. In JetBrains’ IDEs, it is called Live
templates [9]. Regardless of the branding, the idea of snippet generation stays the same: replace an
abbreviated predefined “template identifier” with a predefined template. E.g., with the prompt fori, the
completion system will replace this with a predefined template for (int i = 0; i < ?; i++) {...}.
Snippet templates are typically repeating code patterns that can be defined to reduce coding effort.

In a similar manner, JetBrains’ postfix completion [10] allows predefined templates to be used on
an expression via an abbreviated postfix. For example, given an expression isActive() that can be
evaluated to an expression boolean, the postfix completion isActive().if matches the predefined
template if($EXPR$) {^^...} with template identifier if postfixed to an boolean expression, resulting in
the completion if(isActive()) {^^...}.

Conceptually, these template-based completion techniques resemble expand ICC, replacing the
completion prompt with a completion edit. If the template is closely related to the completion prompt, it
can also be considered as a case of append. Nevertheless, these techniques only use predefined templates,
individually established, and do not actively offer code completion suggestions as ICC does.

4. Conclusion and Future Work

In this paper, we have introduced indirect code completion (ICC) — a novel approach that allows code
completion to make edits to other existing elements that are not restricted to the location where the
completion was initiated. Analysis on the structure and properties of ICC in the context of object-
oriented languages led to the categorisation of different application patterns. Each category can further
be formalised to define the requirements and constraints that could serve as the foundation and aid the
design and implementation of ICC.

ICC opens the door to more powerful and complex suggestions that could greatly increase productivity
and code quality. New research opportunities could explore what could be ICC suggestion candidates,
better-fitting searching algorithms, or ICC in other paradigms. Advancements in the field of (direct) code
completion and AI can also be applied to ICC to provide richer and more relevant suggestions. It also
remains to be seen which theoretically possible ICC kinds are practically useful. Early evaluation using
the MSR 2018 [11] dataset returned promising results [6], where a considerable number of equivalent
sequences of direct code completion and other interaction events can be replaced by a single ICC. Our
current focus is on developing an implementation of ICC so that more accurate evaluation can be done
in future studies.

5

Nhat et al. CEUR Workshop Proceedings 1–6

Declaration on Generative AI

The authors have not employed any Generative AI tools to create, change or rephrase the content of
this document.

References

[1] J. L. Peterson, Computer Programs for Detecting and Correcting Spelling Errors, Communications
of the ACM 23 (1980) 676–687. doi:10.1145/359038.359041.

[2] M. Asaduzzaman, C. K. Roy, K. A. Schneider, D. Hou, CSCC: Simple, Efficient, Context Sensitive
Code Completion, in: Proceedings of the 30th International Conference on Software Maintenance
and Evolution (ICSME), IEEE, 2014, pp. 71–80. doi:10.1109/ICSME.2014.29.

[3] S. Janssens, V. Zaytsev, Go with the Flow: Software Engineers and Distractions, in: T. Kühn,
V. Sousa, S. Abrahão, T. C. Lethbridge, E. Renaux, B. Selić (Eds.), MoDELS’22 Companion Proceed-
ings: Sixth International Workshop on Human Factors in Modeling / Modeling of Human Factors
(HuFaMo), 2022, pp. 934–938. doi:10.1145/3550356.3559101.

[4] L. L. Nunes da Silva Jr., T. Nazareth de Oliveira, A. Plastino, L. G. P. Murta, Vertical Code
Completion: Going Beyond the Current Ctrl+Space, in: Proceedings of the Sixth Brazilian
Symposium on Software Components (SBCARS): Architectures and Reuse, IEEE CS, 2012, pp.
81–90. doi:10.1109/SBCARS.2012.22.

[5] Y. Y. Lee, S. Harwell, S. Khurshid, D. Marinov, Temporal Code Completion and Navigation, in:
Proceedings of the 35th International Conference on Software Engineering (ICSE), IEEE CS, 2013,
pp. 1181–1184. doi:10.1109/ICSE.2013.6606673.

[6] Nhat, V. Zaytsev, CoCoCoLa: Code Completion Control Language, in: Proceedings of the 24th
ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences
(GPCE), ACM, 2025, p. 1–12. doi:10.1145/3742876.3742883.

[7] Microsoft, Snippets in Visual Studio Code, 2025. URL: https://code.visualstudio.com/docs/editing/
userdefinedsnippets.

[8] Microsoft, IntelliSense in Visual Studio, 2025. URL: https://learn.microsoft.com/en-us/visualstudio/
ide/using-intellisense.

[9] IntelliJ, Live templates | IntelliJ IDEA Documentaion, 2025. URL: https://www.jetbrains.com/help/
idea/using-live-templates.html.

[10] IntelliJ, Postfix code completion | IntelliJ IDEA Documentaion, 2025. URL: https://www.jetbrains.
com/help/idea/postfix-code-completion.html.

[11] International Conference on Mining Software Repositories (MSR), MSR 2018 — Mining Challenge,
2018. URL: https://2018.msrconf.org/track/msr-2018-Mining-Challenge.

6

Same Size, Different Costs: Phase-Level Energy Variations
in Transformer Models during Code Generation
Lola Solovyeva1

1University of Twente, Enschede, the Netherlands

Abstract
AI-assisted tools are increasingly integrated into software development, augmenting workflows in code generation,
bug fixing, testing, and documentation. However, their inference introduces extra energy costs that affect
the sustainability of the software lifecycle. In this study, we measure phase-level energy consumption of
LLMs, focusing on four transformer models of comparable size using HumanEval dataset for code generation
under different batch sizes. Our findings show that models with similar parameter counts exhibit distinct
energy consumption patterns across prefill and decoding phases. These results highlight that LLMs of the same
architecture type and with similar parameter counts can still differ due to low-level implementation details, which
should be considered when developing strategies to reduce energy consumption in software development.

1. Introduction

AI-assisted tools are increasingly integrated into software development processes [1]. In the context of
software maintenance and evolution, these tools augment developer workflows in scenarios such as
code generation, refactoring, bug detection, and testing [2]. While LLMs can accelerate those tasks,
their inference processes introduce a non-trivial energy cost, particularly when used repeatedly in
CI/CD pipelines or large-scale maintenance workflows. Research [3] suggested that OpenAI required
3,617 of NVIDIA’s HGX A100 servers, with a tottal of 28,936 GPUs , to support ChatGPT, implying
that it requires 564 MWh per day for its inference. Meanwhile, an estimate of 1,287 MWh was used
in GPT-3 training phase. As a result, the overall sustainability of the software lifecycle now also
depends on the efficiency of the AI tools that support them. While existing studies on LLM efficiency
focus on architectural techniques, these approaches often treat inference as a uniform process [4].
In practice, inference consists of two distinct phases: prefill, that processes the input prompt and
generates internal key/value representations (compute-bound), and decoding, that generates output
tokens autoregressively using these cached representations (memory-bound).

In this work, we demonstrate that transformer models of similar sizes exhibit distinct energy consump-
tion patterns across both phases. Hence, reducing the overall energy consumption of their inference
requires model-specific optimization strategies.

2. Methodology

To record energy measurements per phase, we adopted the method originally proposed by Babakol et
al. [5]. The method involves two parallel processes: (1) collecting GPU energy samples with pyNVML
every 0.01 seconds along with their timestamps, and (2) recording timestamps at the start and end of
generating each token. There was no other process running on the same GPU. The timestamps are
then aligned to measure the energy consumption of each phase.
Four widely used transformer models with roughly similar parameter counts were selected from

Hugging Face, ensuring they could be accommodated on an NVIDIA A10 GPU (24 GB RAM): Llama3.2
(3B), Qwen2.5-Coder (3B), Gemma3 (4B), and Phi3.5 (4B). We used the HumanEval dataset for code

BENEVOL’25: Proceedings of the 24th Belgium-Netherlands Software Evolution Workshop, 17–18 November 2025, Enschede, The
Netherlands
Envelope-Open o.solovyeva@utwente.nl (L. Solovyeva)
Orcid 0009-0008-6903-7086 (L. Solovyeva)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Figure 1: Influence of input tokens and batching on prefill phase costs and per-token costs in the decoding
phase.

generation and evaluated the models with batch sizes of 1 and 8 to examine how a single request and
batching, that increases the workload of the model, influence both phases.

3. Findings & Implications

Figure 1 shows the relationship between input prompt size and its impact on the prefill phase as well as
per-token energy during the decoding stage for the models in this study. Overall, larger prompts and
increased batch sizes lead to higher prefill costs. However, the magnitude of this increase varies across
models, with some showing greater sensitivity to input size. Llama3.2 (3B) and Gemma3 (4B) exhibit a
steeper increase compared to Qwen2.5 (3B) and Phi3.5 (4B), despite having similar parameter counts.
In regard to the influence of input size on the decoding stage, we can observe expected differences

in costs between the models for a single request, since larger models would exhibit higher costs. A
more interesting pattern emerges when processing batched requests, which increases the workload
by combining multiple requests in one. The models respond differently: Phi3.5 (4B) and Llama3.2 (3B)
show approximately a 1.5×increase in energy per token when the input grows from 400 to 1200 tokens,
whereas the other two models are either unaffected or exhibit a much smaller increase.

These findings suggest that even among models of the same architecture type with similar parameter
counts, their energy patterns differ across phases, indicating that these differences likely stem from
low-level implementation details such as memorymanagement and runtime optimizations. Furthermore,
the choice of model within the software development lifecycle should depend on the specific task. For
example, models that are less sensitive to input size may be better suited for tasks involving larger
inputs, such as code translation, test or docstring generations.

References
[1] C. Ebert, P. Louridas, Generative ai for software practitioners, IEEE Software 40 (2023) 30–38. doi:10.1109/

MS.2023.3265877.
[2] N. Alizadeh, B. Belchev, N. Saurabh, P. Kelbert, F. Castor, Language models in software development tasks:

An experimental analysis of energy and accuracy, 2025. URL: https://arxiv.org/abs/2412.00329.
[3] A. de Vries, The growing energy footprint of artificial intelligence, Joule 7 (2023) 2191–2194. doi:https:

//doi.org/10.1016/j.joule.2023.09.004.
[4] M. F. Argerich, M. Patiño-Martínez, Measuring and improving the energy efficiency of large language models

inference, IEEE Access 12 (2024) 80194–80207. doi:10.1109/ACCESS.2024.3409745.
[5] T. Babakol, Y. D. Liu, Tensor-aware energy accounting, in: Proceedings of the IEEE/ACM 46th International

Conference on Software Engineering, ICSE ’24, Association for Computing Machinery, New York, NY, USA,
2024. URL: https://doi.org/10.1145/3597503.3639156.

The Cost of AI-Assisted Coding: Energy vs. Accuracy in
Language Models⋆

Negar Alizadeh1, Boris Belchev2, Nishant Saurabh1 and Patricia Kelbert3

1Utrecht University, Utrecht, The Netherlands
2University of Twente, Enschede, The Netherlands
3Fraunhofer IESE, Kaiserslautern, Germany

1. Introduction and Motivation

Generative Large Language Models (LLMs) have become widely accessible since the release of ChatGPT
in late 2022 [2], and their adoption nearly doubled in under six months [3]. In addition, the major-
ity of developers find code-specific AI models beneficial and have integrated them into their daily
workflows. [4, 5].

Even though these AI tools are accessible through third-party APIs, client companies are mainly
concerned about data privacy, security, and subscription costs. This motivates the use of locally deployed
open-access language models. One approach for deploying LLMs locally is to utilize a flagship GPU
with sufficient memory optimized for Deep Learning (DL) applications and to set up an open-access
LLM on it. However, since these GPUs are not affordable for everyone, an alternative solution could be
using compressed and quantized models that can run on smaller GPUs or even large CPUs.

At the same time, the energy cost of LLMs, especially during inference, has become a growing
concern due to financial and environmental impacts [6, 7]. Furthermore, recent studies evaluating
code-centric LLMs have mainly focused on performance in terms of accuracy, often overlooking their
energy footprint.[8, 9].

The goal of this study is to investigate the energy consumption of using LLMs during the inference
phase in typical software development tasks, namely code generation, bug fixing, docstring generation,
and test case generation. We selected these 4 tasks because they are widely used by developers [10]
and frequently addressed in software engineering research involving deep learning [11]. They also
represent the software development lifecycle, from implementation and documentation to testing and
maintenance.

In particular, we address the following research questions:

RQ1 How does energy usage vary across software-related tasks?

RQ2 Is there a trade-off between energy efficiency and accuracy?

RQ3 Which model characteristics influence energy consumption?

RQ4 What are the performance differences between general-purpose models and code-specific models?

2. Methodology and Results

Our experimental design involves evaluating 18 language model families across three precision formats
on two real-world hardware setups: a high-end A100 GPU and a consumer-grade RTX3070 GPU. Model

BENEVOL’25: Proceedings of the 24th Belgium-Netherlands Software Evolution Workshop, 17–18 November 2025, Enschede, The
Netherlands
⋆
Accepted at the 22nd International Conference on Mining Software Repositories (MSR 2025) [1]
Envelope-Open n.s.alizadeh@uu.nl (N. Alizadeh); b.belchev@student.utwente.nl (B. Belchev); n.saurabh@uu.nl (N. Saurabh);
patricia.kelbert@iese.fraunhofer.de (P. Kelbert)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

selection was based on their popularity on Hugging Face, availability, and the reputability of their
creators. Running an LLM locally requires a compatible runtime to handle inference across devices. We
chose Ollama based on its popularity on GitHub and ease of switching between models. All evaluations
are conducted on the HumanEvalPack dataset [12], with top-p set to 0.95 and temperature to 0.1,
following prior studies [13, 14, 15]. As for the evaluation metric, we report test coverage and correctness
for test generation and pass@1 for the rest.

Our findings indicate that a model’s energy consumption is directly affected by the software develop-
ment task it performs, with notable performance variations between tasks. Therefore, selecting models
based on the tasks they are expected to handle is key to reducing the energy footprint. In contrast,
energy usage per generated token remains consistent across tasks for a model. Additionally, the total
energy consumed by each model is strongly correlated with its architectural characteristics, suggesting
that some aspects of an LLM’s architecture can help estimate its efficiency, given that the average size
of the outputs can be anticipated. Finally, we observed that energy consumption and accuracy do not
always require a compromise, as larger models often have a significantly higher energy footprint while
performing similarly, or even being outperformed by smaller models in terms of accuracy. Finally,
“Coding”-specific models can be more accurately described as “code generation” models. Our results
suggest that fine-tuning models for other tasks, such as docstring generation and bug fixing, is a
potential research avenue.

To improve generalizability, future work could include more programming languages and use bench-
marks with complex, real-world tasks rather than simple Python functions. Currently, we are exploring
ways to predict model efficiency based on architectural features, to reduce the need for costly experi-
ments.

References

[1] N. Alizadeh, B. Belchev, N. Saurabh, P. Kelbert, F. Castor, Languagemodels in software development
tasks: An experimental analysis of energy and accuracy, in: 2025 IEEE/ACM 22nd International
Conference on Mining Software Repositories (MSR), IEEE, 2025, pp. 725–736. doi:10.1109/MSR6
6628.2025.00109.

[2] C. Ebert, P. Louridas, Generative AI for software practitioners, IEEE Softw. 40 (2023) 30–38.
doi:10.1109/MS.2023.3265877.

[3] Microsoft Corporation, AI at Work Is Here—Now Comes the Hard Part, "https://www.microsof
t.com/en-us/worklab/work-trend-index/ai-at-work-is-here-now-comes-the-hard-part", 2024.
Accessed: 2024-11-05.

[4] Stack Overflow, Developers get by with a little help from ai: Stack overflow knows code - assistant
pulse survey results, https://stackoverflow.blog/2024/05/29/developers-get-by-with-a-little-help-f
rom-ai-stack-overflow-knows-code-assistant-pulse-survey-results/, 2024. Accessed: 2024-11-08.

[5] GitHub, Research: Quantifying github copilot’s impact in the enterprise with accenture, https:
//github.blog/news-insights/research/research-quantifying-github-copilots-impact-in-the-enterpr
ise-with-accenture/, 2024. Accessed: 2024-11-08.

[6] E. Strubell, A. Ganesh, A. McCallum, Energy and policy considerations for deep learning in NLP,
CoRR abs/1906.02243 (2019).

[7] A. Lacoste, A. Luccioni, V. Schmidt, T. Dandres, Quantifying the carbon emissions of machine
learning, CoRR abs/1910.09700 (2019).

[8] Z. Zheng, K. Ning, Y. Wang, J. Zhang, D. Zheng, M. Ye, J. Chen, A survey of large language models
for code: Evolution, benchmarking, and future trends, CoRR abs/2311.10372 (2023).

[9] J. Jiang, F. Wang, J. Shen, S. Kim, S. Kim, A survey on large language models for code generation,
CoRR abs/2406.00515 (2024).

[10] M. Khemka, B. Houck, Toward effective AI support for developers: A survey of desires and
concerns, Commun. ACM 67 (2024) 42–49. doi:10.1145/3690928.

[11] C. Watson, N. Cooper, D. Nader-Palacio, K. Moran, D. Poshyvanyk, A systematic literature review

on the use of deep learning in software engineering research, ACM Trans. Softw. Eng. Methodol.
31 (2022) 32:1–32:58. doi:10.1145/3485275.

[12] N. Muennighoff, Q. Liu, A. Zebaze, Q. Zheng, B. Hui, T. Y. Zhuo, S. Singh, X. Tang, L. von Werra,
S. Longpre, Octopack: Instruction tuning code large language models, CoRR abs/2308.07124
(2023).

[13] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone, C. Akiki, J. Li, J. Chim,
et al., Starcoder: may the source be with you!, Trans. Mach. Learn. Res. 2023 (2023).

[14] A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi, A. Tang, D. Pykhtar, J. Liu, Y. Wei,
et al., Starcoder 2 and the stack v2: The next generation, CoRR abs/2402.19173 (2024).

[15] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, T. Remez, J. Rapin,
A. Kozhevnikov, I. Evtimov, J. Bitton, M. Bhatt, C. Canton-Ferrer, A. Grattafiori, W. Xiong, A. Dé-
fossez, J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, G. Synnaeve, Code llama:
Open foundation models for code, CoRR abs/2308.12950 (2023).

Bridging CPU and GPU in Rust
Niek Aukes1, Cristian-Andrei Begu1 and Georgiana Caltais1

1University of Twente, The Netherlands

Abstract
As heterogeneous computing becomes widespread, fragmented workflows for managing separate CPU and GPU
codebases create significant challenges for software evolution. This paper introduces a unified compilation
model for Rust that addresses this fragmentation by treating GPU kernels as native functions. Using a prototype
compiler, we demonstrate the benefits of treating GPU kernels as native code with a case study: migrating an
existing multi-threaded CPU program to use GPU acceleration. We introduce a unified compilation model that
contributes to reducing maintenance overhead and technical debt in migrating and evolving heterogeneous
systems.

Keywords
Rust, compiler, hybrid compilation, GPU acceleration, CUDA, heterogeneous programming

1. Introduction

Heterogeneous computing, in which a CPU orchestrates GPUs executing highly parallel kernels, has
become widespread across various disciplines, including scientific simulation, real‐time rendering, and
emerging artificial intelligence workloads. This is reflected in real-world adoption: the June 2025 TOP500
list [1] indicates that over one-third of high‑performance systems use GPU accelerators. Yet, despite this
hardware revolution, the software infrastructure remains fragmented: host code is traditionally written
in C, C++ or Python, while performance‐critical kernels are implemented in specialized languages like
CUDA C [2] or OpenCL C [3]. This divide may result in developers maintaining parallel code bases,
which may lead to increased maintenance costs. GPU‐specific languages further suffer from a narrower
ecosystem: they lack the rich standard libraries and package‐management facilities of mainstream CPU
languages. Consequently, even light refactoring requires edits in two languages, validation across two
toolchains, and custom build steps. These fractured workflows may not only hinder development but
also incur technical debt, undermining the maintainability and long‐term evolution of heterogeneous
applications.

Several tools have attempted to reduce this complexity. In C and C++, OpenMP [4] provides directives
that allow loops to be parallelized onGPUhardware via annotations. This lowers the entry cost compared
towriting explicit CUDAorOpenCL, but themodel is applicable to loop-based parallel patterns and offers
less control over execution and optimization than explicit GPU programming. High‐level languages
have also partially addressed the divide: Numba [5], for example, compiles annotated Python functions
into CUDA kernels, offering in‐place acceleration within a single Python syntax and integration with
the broader Python stack. While performance limitations from Python’s dynamic typing, interpreted
nature, and the global interpreter lock primarily affect non‐accelerated code, Numba introduces its own
challenges. Its programming model is often non‐idiomatic for Python developers, and its error messages
can be difficult to understand. Compiled languages have fared no better: GPU programs typically resort
to OpenCL APIs, while NVIDIA’s CUDA C++ compiler still requires a two-stage build that extracts and
compiles kernels separately [6]. These approaches leave developers with split toolchains and additional
build complexity.
Despite these challenges, Rust’s combination of zero-cost abstractions, a compile-time ownership

model and borrow checker (the compiler enforcing safe memory sharing rules), and a comprehensive
standard library [7] positions it as an ideal base for unified heterogeneous programming. These checks,

BENEVOL25: The 24th Belgium-Netherlands Software Evolution Workshop, Autumn 2025, Enschede, The Netherlands
Envelope-Open n.aukes@student.utwente.nl (N. Aukes); c.begu@student.utwente.nl (C. Begu); g.g.c.caltais@utwente.nl (G. Caltais)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

together with a strong static type system, catch many concurrency and memory safety errors at
compile time, while Cargo and crates.io provide a mature package ecosystem with over 190,000
packages [8]. Prior work by Holk et al. [9] already demonstrated the possibility of extending Rust with
GPU support. Their prototype showed that Rust could be used as a base for hybrid compilation, by
using a pre-processing step to separate host and device code.

More recently, projects such as Rust-GPU [10] and Rust-CUDA [11] have advanced the state of GPU
programming in Rust by showing that safe, idiomatic Rust can directly target GPU execution environ-
ments. Their progress highlights the potential for a convergent toolchain where unified compilation and
GPU-first abstractions reinforce each other. Alongside this, Faé and Griebler developed a macro-based
GPU accelerator [12] demonstrating an alternative path, trading language flexibility for a simplified
experience. These efforts point toward a growing ecosystem where our compiler can interoperate and
extend the reach of Rust on heterogeneous platforms.
Our contribution is to showcase a unified compilation approach for Rust that treats GPU kernels

as native Rust functions, building on prior compiler efforts. This reduces the need for separate ker-
nel languages and build steps, making it easier for developers to write, migrate, refactor, and test
heterogeneous applications within a familiar Rust workflow.

The remainder of this paper is organized as follows. Section 2 presents the system design, detailing
the approach that enables unified CPU–GPU compilation. Section 3 demonstrates the proposal through
a case study: migrating, testing, and evolving an existing Rust program using the hybrid compiler.
Section 4 discusses the implications of our compiler, its limitations, and potential directions for the
future.

2. The Unified Compiler

In this section, we describe our unified compiler and the changes made to the Rust compilation pipeline
to treat GPU kernels as native Rust functions, without disrupting the original host workflow. A high-
level overview of the unified compiler is shown in Figure 1. For an in-depth description of its design and
implementation, we refer readers to our earlier work [13, 14]. The source code, along with installation
instructions, is available at https://github.com/NiekAukes/rust-gpu-hybrid-compiler
In standard Rust, the compiler parses source code into an Abstract Syntax Tree, lowers it to the

High‐level Intermediate Representation for type checking, then to the Mid‐level Intermediate Rep-
resentation (MIR) for borrow checking and optimizations, and finally emits LLVM IR for machine
code generation [15]. The compiler executes these stages via “queries”, on-demand computations that
retrieve information such as a variable’s type or the body of a function when required.
The design of Holk et al. [9] introduces a pre-processing step that identifies functions marked with

the #[kernel] attribute and generates two separate source code artifacts: one for the host and one for
the device. The host code is compiled with the standard Rust compiler, while the device code is handled

Figure 1: Compilation of annotated functions: MIR splits into GPU (1-3) and CPU (2) paths, converging in
LLVM backend (4); parsing, type, and borrow checks are shared (0)

by a modified Rust compiler that emits GPU bytecode. These two outputs are then re-integrated at
runtime via OpenCL bindings.

In our approach, functions marked with a #[kernel] attribute trigger the compiler to fork the MIR
into two paths. As illustrated in Figure 1, the GPU path (1) lowers the MIR into GPU bytecode, which is
then embedded back into the CPU MIR as a static object (3). The CPU path (2) continues with both
the host logic and the embedded GPU code. From there, the combined MIR is passed into the standard
LLVM backend for code generation (4), producing a single executable that contains both CPU and GPU
components. This design allows all parsing, type checking, and borrow checking (0) to remain shared,
while the final binary is produced by a single toolchain from a single source.

Our modified compiler preserves the full set of Rust’s core language features1, including type
checking, borrow checking, lifetimes, generics, and traits. Beyond these, it also supports several
advanced capabilities, such as defining custom panic (exception) handlers and performing dynamic
memory allocation directly on the GPU. All supported features should behave consistently with their
CPU counterparts, which provides several advantages: developers can reuse the same source code
across CPU and GPU, and rely on identical execution semantics. Importantly, our compiler retains full
compatibility with existing Rust projects and tooling.
Although our model has many benefits, there are also limitations with the current implementation

of the programming model. Most importantly, only CUDA-enabled GPUs are currently supported by
our compiler. This is because the architectural design of Nvidia GPUs allows many CPU execution
constructs that are not available on other platforms. Examples include dynamic dispatch of functions
(object-oriented programming) and function recursion. CUDAs open-specification counterpart, Vulkan
[16], simply do not support these constructs that the Rust Compiler relies on [17, ch.2.16].
Beyond traditional models, it is also useful to contrast our work with ongoing efforts in the Rust

ecosystem. Rust-GPU targets shader and kernel development and focuses on compiling Rust directly
into GPU targets [11, 10]. While it enables a safe, expressive programming model for GPU code, it
still requires complex build steps and careful separation between CPU, GPU, and shared logic [18]. By
contrast, our approach emphasizes single-source development and unifies CPU and GPU code within
one compiler pipeline, which simplifies maintenance and testing across heterogeneous backends.

Another approach is that of themacro-based accelerator[12], which provides a higher-level abstraction
by transforming constrained Rust code into GPU-executable code through procedural macros. This
model reduces developer burden, but it achieves this simplicity by enforcing restrictions on how GPU
code is written. Our compiler takes the opposite stance: it supports the full Rust core language and
many advanced features within GPU kernels, while preserving execution consistency between CPU
and GPU paths.

3. A Mandelbrot Example

Figure 2: A Mandelbrot fractal.

To showcase the potential of our hybrid compilation approach,
we adapt an existing open-source Mandelbrot set generator,
originally a traditional multi-threaded CPU program in Rust,
to our modified compiler. The Mandelbrot set (Figure 2) is a
well-known example in parallel computing: a fractal rendered
by applying the same iterative computation independently to
each pixel of the image, making it an ideal workload for both
CPU parallelism and GPU acceleration.
The original project is available at https://github.com/

JohnTWilkinson/Gendelbrot and our migrated version is avail-
able at https://github.com/NiekAukes/Gendelbrot. By work-
ing with an existing codebase, we provide a supporting ex-
ample that illustrates how our approach can introduce GPU

1Core features include all language constructs and the core library, but exclude the standard library

acceleration into software not originally designed for heterogeneous execution.
The first stage in the migration moves the computation from CPU threads to GPU execution. In a

conventional CUDA or OpenCL port, the main computation function would be rewritten in a GPU-
specific language, moved into a separate module, compiled with a separate toolchain, and manually
integrated with the host code. In contrast, our migration, shown in Figure 3, keeps the computation
entirely in Rust. The existing threaded loop (lines 1–18, left) is replaced by a GPU kernel (lines 1–17,
right). Instead of spawning threads explicitly (line 2, left), the kernel is launched once from the host
(lines 19–21, right). The nested loops over pixel coordinates (lines 4–5, left) are replaced by a computation
based on the thread index (lines 5–7, right), which directly maps each GPU thread to a pixel. The
coordinate calculation (lines 6–8, left vs. lines 9–11, right) remains the same, and the Complex type
used in both versions refers to the same type definition (line 10, left vs. line 13, right), reused directly
inside the GPU kernel. The image update (lines 11–13, left vs. lines 13–15, right) also maps directly
between the two versions. The rest of the codebase, including its use of Rust libraries and the Cargo
build system, remain identical.

Compared with traditional migration approaches, our model sits at a middle ground between OpenMP
and OpenCL. Like OpenMP, the changes required are extensions within the same source language,
which avoids splitting the program into separate codebases. At the same time, similar to OpenCL,
developers must still understand the parallel execution model: loops do not transform automatically
but are re-expressed through thread identifiers. In addition, knowledge of GPU primitives such as
synchronization and thread grouping, remains important when adapting more complex computations.

1 for t in 0..threads {
2 thread::spawn(move || {
3 let mut slice = vec![u8::MAX;

this_height * image_width];↪

4 for i in 0..this_height {
5 for j in 0..image_width {
6 let x = real_start +
7 (j * real_step);
8 let y = i_start - (i * i_step);
9

10 let p = Complex::new(x, y);
11 if p.is_stable(iterations) {
12 slice[i * image_width + j] = 0;
13 }
14 }
15 }
16 tx.send((t, slice)).unwrap();
17 });
18 }

1 #[kernel]
2 fn mandelbrot(
3 mut image: Buffer<u8>, offset: usize, ...
4) {
5 let pos = offset + gpu::global_tid_x();
6 let i = pos / image_width;
7 let j = pos % image_width;
8

9 let x = real_start +
10 (j * real_step);
11 let y = i_start - (i * i_step);
12

13 let p = Complex::new(x, y);
14 if p.is_stable(iterations) {
15 image.set(i * image_width + j, 0);
16 }
17 }
18

19 mandelbrot.launch(
20 threads, blocks, image, 0, ...
21).unwrap();

Figure 3: Migration from CPU threads (left) to GPU kernel (right).

An additional benefit during migration is that testing requires no changes to existing workflows.
Since the hybrid compiler allows GPU kernels to call the same logic as the CPU path, existing unit tests,
such as those checking the behavior of the Complex type, run without modification within Cargo’s
testing framework. Beyond these unchanged unit tests, the unified workflow makes it trivial to add
regression tests that compare the outputs of the CPU and GPU implementations. Such comparisons
are more complex in a split-language environment, where separate toolchains make it impractical to
compare host and device code in a single test suite.
After migrating Gendelbrot, we validated the new implementation using Rust’s built-in testing

framework [7, ch.11]. Before migration, Gendelbrot already included a suite of unit tests testing the
CPU implementation of the algorithm. During migration, we preserved all of these existing tests
without modification, since the hybrid compiler allows GPU kernels to invoke the same logic as the

1 #[test]
2 fn test_mandelbrot_gpu_simple_default() {
3 let options = MandelbrotCpu::default();
4 let image = build_mandelbrot_gpu_simple(&options);
5 assert_eq!(image.len(), options.image_width * options.image_height);
6 let expected_image = build_mandelbrot_cpu_simple(&options);
7

8 if image != expected_image {
9 println!("GPU image does not match expected output.");
10 export_image(&image, options.image_width, options.image_height, "gpu_output.png");
11 export_image(&expected_image, options.image_width, options.image_height,

"expected_output.png");↪

12 assert!(false, "GPU image does not match expected output.");
13 }
14 }

Figure 4: Example of testing the GPU implementation against the verified CPU implementation

CPU path. In addition, we extended the suite with regression tests that directly compare the output of
the GPU execution against the verified CPU baseline (Figure 4). These tests also provide a systematic
way to detect potential divergences with further optimization or refactoring.

Looking forward, the single-source model also has implications for long-term evolution. In a tradi-
tional CUDA or OpenCL program, every structural or behavioral change requires coordination and
mirroring between host and device definitions, often across different languages and toolchains. This
duplication can add extra work during refactoring and may increase the likelihood of inconsistencies,
such as mismatched data layouts, incomplete updates to kernel logic, or divergent type definitions.
By ensuring that both CPU and GPU code operate on the same shared structures and are validated in
the same compiler pass, our approach should reduce this type of user errors. Our approach should
also reduce technical debt and enable heterogeneous programs to evolve similarly to their CPU-only
counterparts.

4. Conclusion

We presented a single-source compilation model that facilitates the evolution of existing Rust programs
into heterogeneous CPU/GPU applications with minimal code changes. This model operates within the
standard Cargo ecosystem, enabling developers to leverage familiar tooling and a large package registry.
Our approach also improves long-term maintainability by allowing host and device code to share data
structures and logic, which simplifies future refactoring efforts. However, this approach introduces
its own set of challenges. Currenty, our work only supports CUDA-enabled GPUs, which makes the
current work impractical for cross-platform programming. Supporting cross-platform tools like Vulkan
remains challenging, but possible. Additionally, the reliance on a modified compiler requires dedicated
maintenance to keep pace with the official Rust toolchain’s evolution.
Several paths for future work could improve the model’s viability. A performance analysis against

established toolchains could guide the implementation of GPU-specific optimization passes. Additional
developer support could be provided through GPU-specific lints that detect anti-patterns, which could
be integrated into Cargo’s workflow. Moving beyond the current NVIDIA-only backend toward cross-
platformAPIs like Vulkan would greatly increase the compiler’s relevance. Collaborating with initiatives
such as Rust-GPU [10] and Rust-CUDA [11] could play a pivotal role in achieving this. Refactoring
tools could also be developed to help automate the migration of existing CPU code. Finally, exploring
ways to reduce the maintenance of the compiler fork, such as through a more modular architecture,
would help with its maintainability.

Acknowledgements. Thiswork is partially supported by the CYCLIC project (file no. OCENW.XL.23.089)
of the research programme Open Competition Domain Science XL, by the Dutch Research Council

(NWO) under the grant https://doi.org/10.61686/FHYZO53064.

References

[1] June 2025 TOP500, 2025. URL: https://www.top500.org/lists/top500/2025/06/, Accessed: August
2025.

[2] NVIDIA Corporation, CUDA C Programming Guide, NVIDIA, 2024. URL: https://docs.nvidia.com/
cuda/cuda-c-programming-guide/, Accessed: August 2025.

[3] Khronos Group, The OpenCL C Specification, Khronos Group, 2025. URL: https://registry.khronos.
org/OpenCL/specs/3.0-unified/html/OpenCL_C.html, Accessed: August 2025.

[4] OpenMP Architecture Review Board, OpenMP Application Programming Interface, OpenMP ARB,
2024. URL: https://www.openmp.org/specifications/, Accessed: August 2025.

[5] S. K. Lam, A. Pitrou, S. Seibert, Numba: a LLVM-based Python JIT compiler, in: Proceedings of
the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15, Association for
Computing Machinery, New York, NY, USA, 2015. URL: https://doi.org/10.1145/2833157.2833162.
doi:10.1145/2833157.2833162.

[6] NVIDIA CUDA Compiler Driver 13.0 documentation, 2025. URL: https://docs.nvidia.com/cuda/
cuda-compiler-driver-nvcc/, Accessed: August 2025.

[7] S. Klabnik, C. Nichols, The Rust Programming Language, 2nd Edition, No Starch Press, 2023. URL:
https://doc.rust-lang.org/book/.

[8] crates.io: Rust package registry, 2025. URL: https://crates.io/, Accessed: August 2025.
[9] E. Holk, M. Pathirage, A. Chauhan, A. Lumsdaine, N. D. Matsakis, GPU programming in Rust:

Implementing high-level abstractions in a systems-level language, in: 2013 IEEE International
Symposium on Parallel & Distributed Processing, Workshops and Phd Forum, 2013, pp. 315–324.
doi:10.1109/IPDPSW.2013.173.

[10] Rust-GPU, Embark Studios, rust-gpu: Rust as a first-class language and ecosystem for GPU graphics
& compute shaders, https://github.com/Rust-GPU/rust-gpu, 2020-2025. Accessed: September 2025.

[11] Rust-CUDA: Ecosystem of libraries and tools for writing and executing fast GPU code fully in
Rust, https://github.com/Rust-GPU/Rust-CUDA, 2021-2025. Accessed: September 2025.

[12] L. Faé, D. Griebler, Towards gpu parallelism abstractions in rust: A case study with linear
pipelines, in: Anais do XXIX Simpósio Brasileiro de Linguagens de Programação, SBC, Porto
Alegre, RS, Brasil, 2025, pp. 75–83. URL: https://sol.sbc.org.br/index.php/sblp/article/view/36951.
doi:10.5753/sblp.2025.13152.

[13] N. Aukes, Hybrid compilation between GPGPU and CPU targets for Rust, Thesis, University of
Twente, Enschede, 2024. URL: https://purl.utwente.nl/essays/100981.

[14] C.-A. Begu, Enabling Idiomatic Rust for Hybrid CPU/GPU Programming, Thesis, University of
Twente, Enschede, 2025. URL: https://purl.utwente.nl/essays/107371.

[15] The Rust Project Developers, The rustc Development Guide, https://rustc-dev-guide.rust-lang.org/,
2025. Accessed: August 2025.

[16] Vulkan® 1.4.326 - a specification, 2025. URL: https://registry.khronos.org/vulkan/specs/latest/
html/vkspec.html, Accessed: September 2025.

[17] J. Kessenich, B. Ouriel, R. Krisch, Spir-v specification, Khronos Group 3 (2018) 17.
[18] C. Legnitto, Rust running on every gpu, 2025. URL: https://rust-gpu.github.io/blog/2025/07/25/

rust-on-every-gpu.

The Sampling Threat when Mining Generalizable
Inter-Library Usage Patterns
Yunior Pacheco Correa1, Coen De Roover1 and Johannes Härtel2

1Vrije Universiteit Brussel, Brussels, Belgium
2Vrije Universiteit Amsterdam, Amsterdam, Netherlands

Abstract
Tool support in software engineering often relies on relationships, regularities, patterns, or rules mined from other
users’ code. Examples include approaches to bug prediction, code recommendation, and code autocompletion.
Mining is typically performed on samples of code rather than the entirety of available software projects. While
sampling is crucial for scaling data analysis, it can affect the generalization of the mined patterns.

We observe that limiting the sample to a specific library may hinder the generalization of inter-library patterns,
posing a threat to their use or interpretation. Using a simulation and a real case study, we show this threat for
different sampling methods. Our simulation shows that only when sampling for the disjunction of both libraries
involved in the implication of a pattern, the implication generalizes well. Additionally, we show that real empirical
data sampled using the GitHub search API does not behave as expected from our simulation. This identifies a
potential threat relevant for many studies that use the GitHub search API for studying inter-library patterns.

Keywords
Sampling, Usage Patterns, Inter-Library, Dataset, Data Mining

1. Introduction

Sampling is crucial in empirical research, including Empirical Software Engineering (ESE) and Mining
Software Repositories (MSR) [1, 2]. In MSR and ESE, researchers often sample software projects from
sources like GitHub and aim to generalize their findings to unseen software projects. For studies that
mine library or framework (API) patterns, sampling is equally important. Researchers extract API usage
patterns from code by sampling examples from existing API applications.

Nuryyev et al. [3] for instance, mined the sample of 533 repositories from GitHub for annotation
usage rules and validated them by human experts. We can find a rule of the following form:

𝑡𝑦𝑝𝑒(javax.json.JsonString)

→ 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛(org.eclipse.microprofile.jwt.Claim)

This rule can be interpreted as a logical or probabilistic relationship, indicating that when a method
returns a JsonString, it should carry a Claim annotation. This statement crosses different libraries, making
it an inter-library pattern. Since JavaX’s JsonString may also appear in other contexts, unrelated to
MicroProfile’s Claim annotation, the rule is not logically true. However, it may hold probabilistically
with a certain confidence.

Nuryyev et al. discovered this pattern with unexpectedly high confidence. The authors assume
JavaX to be an integral part of the MicroProfile framework. This is not true and renders it a rule
between different libraries. We call it an inter-library pattern instead of an intra-library pattern. From a
sampling perspective, we noticed that this distinction can be crucial. This problem leads us to ask: Is
the confidence of a rule computed on the sample the same as for the entire population? In short, can
we generalize? Is there a difference between intra-library and inter-library patterns? More concretely,
we define our research question as follows:
How do sampling methods influence the generalizability of mined inter-library usage patterns from client
software projects?

The 24th Belgium-Netherlands Software Evolution Workshop 17–18 November 2025, Enschede, The Netherlands
$ ypacheco@vub.be (Y. P. Correa); coen.de.roover@vub.be (C. D. Roover); j.a.hartel@vu.nl (J. Härtel)
� 0000-0002-7849-7841 (Y. P. Correa); 0000-0002-1710-1268 (C. D. Roover); 0000-0002-7461-2320 (J. Härtel)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:ypacheco@vub.be
mailto:coen.de.roover@vub.be
mailto:j.a.hartel@vu.nl
https://orcid.org/0000-0002-7849-7841
https://orcid.org/0000-0002-1710-1268
https://orcid.org/0000-0002-7461-2320
https://creativecommons.org/licenses/by/4.0/deed.en

2. Research Method and Results

To answer the research question, this paper follows a research method that combines an empirical study
and a simulation study that examines inter-library patterns mined on data using different practices: i)
random samples, ii) single library samples that collect client projects that use a particular library, and iii)
co-used library samples that collect client projects by analyzing different combinations of usage of two
libraries.

In the simulation study, we analyze the generalizability in terms of confidence for both intra-library
and inter-library patterns. In the empirical study, we focus on inter-library patterns. The empirical
and simulation studies examine the impact of different sampling methods on the mined inter-library
patterns, considering the degree of popularity of the libraries involved.

We present evidence that confidence of mined inter-library usage patterns differs depending on
the sampling method. Thereby, patterns may or may not generalize. For the specific case of mining
inter-library usage patterns, we present an empirical study showing that mining on data sampled from
GitHub does not behave as expected based on a corresponding simulation. Specifically, two sampling
methods that should theoretically yield the same results instead produce different outcomes. This
discrepancy suggests that at least one of the sampling methods is unreliable, assuming our simulation
assumptions hold. Our findings highlight that the GitHub search API operates more as a black box than
previously anticipated.

We provide a replication package online1. The resulting insights of our study can directly be used by
future studies that extract patterns from samples. Either they improve their sampling method in a
way that the mined patterns generalize better, or they improve their threats to validity section
by discussing the limitations that we identified.

3. Conclusions and Future Work

At its core, this study examines the generalizability of findings in a specific area of software engineering.
Our insights have practical implications: they can inform the choice of sampling methods in future
research, or be highlighted as potential threats to validity in similar studies.

Relying only on data from single-library sampling for inter-library patterns (without manual val-
idation) can weaken the validity of results. Random sampling is better but often not practical for
rare libraries. Combining data from multiple sources and considering alternative mirror datasets like
GHTorrent is recommended when possible.

Researchers and practitioners must stay alert. Recognizing and documenting the limitations of data
collection and the black box nature of the GitHub search API is important to ensure the validity of
mining studies. Developers using mined usage patterns in tools should also be careful, especially when
working with patterns involving less popular libraries.

Future work should conduct more experiments to confirm these findings in similar settings. It is
important to address and resolve the issues identified in this study. Further research should develop
methods that help ensure the generalizability of results when mining inter-library usage patterns. This
includes providing more transparent indexing mechanisms as alternatives to GitHub.

References

[1] V. Cosentino, J. L. C. Izquierdo, J. Cabot, Findings from github: methods, datasets and limitations,
in: MSR, ACM, 2016, pp. 137–141.

[2] O. Dabic, E. Aghajani, G. Bavota, Sampling projects in github for MSR studies, in: MSR, IEEE, 2021,
pp. 560–564.

[3] B. Nuryyev, A. K. Jha, S. Nadi, Y. Chang, E. Jiang, V. Sundaresan, Mining Annotation Usage Rules:
A Case Study with MicroProfile, in: ICSME, IEEE, 2022, pp. 553–562.

1https://doi.org/10.5281/zenodo.14841462

https://doi.org/10.5281/zenodo.14841462

An Analysis of Code Clones in GitHub Actions Workflows
Guillaume Cardoen1, Alexandre Decan1,2 and Tom Mens1

1Software Engineering Lab, University of Mons, Belgium
2F.R.S.-FNRS Research Associate

Abstract
GitHub Actions is the built-in CI/CD service of GitHub. While it promotes the use of reusable components,
copy-pasting from existing workflows remains a frequent practice, which may lead to code clones. This paper
explores the occurrences of code clones inside workflows. We conduct a quantitative analysis of 352K+ code
clones instances in a dataset of 117K+ active workflows across GitHub. We observe that most workflow files
contain non trivial code clones, mainly at the level of workflow steps. This study characterises code clones in
GitHub Actions workflows, hence constituting the basis for understanding the impact of code clones in workflows.

Collaborative software development is an essential practice for globally distributed project teams. It
relies on social coding platforms such as GitHub, providing a multitude of collaboration tools such as
version control, issue and pull request management, quality analysis, code reviewing and continuous
integration/deployement (CI/CD). GitHub is the most popular social coding platform, with over 5.2
billion contributions by over 100 millions users worldwide to more than 518 million repositories
according to GitHub’s 2024 Octoverse report [1].

In November 2019 GitHub released GitHub Actions (abbrevatied to GHA) as its built-in CI/CD tool,
becoming the dominant CI/CD service in GitHub repositories in less than 18 months [2]. The GHA
service requires repository maintainers to define and store workflows as YAML files in their repositories.
These workflows declare how to automate repetitive tasks (e.g., testing, building, issue triaging, quality
analysis, deploying) in reaction to one or more events (e.g., a push to a branch, a new pull request, a
fixed schedule). When such an event occurs, a runner executes the corresponding workflow.

Workflows may use Actions, one of GHA reusable components. Actions can be of multiple types. A
JavaScript Action is a single JavaScript file that is executed during runtime. Composite Actions use
a similar syntax to that of GHA workflow, and can be used to declare a sequence of steps in a single
reusable component callable from other workflows. Finally, reusable workflows share the syntax of GHA
workflow and allow maintainers to reuse complete jobs.

Despite these reuse mechanisms, creating new workflows based on existing ones (either from the
same author or from someone else) is a common practice [3]. Copy-pasting from one’s own workflow
is a frequent reuse mechanism used by GHA’s users. This copy-paste reuse tends to lead to duplicated
fragments within and across workflow files.

Such duplicated code is commonly referred to as code clones. Code cloning has been, and remains to
be, a very active topic of research [4]. A common definition of code clones are code fragments that are
similar according to some similarity measure [4].

Depending on the reasons of code cloning, it may have positive effects or to the contrary, be
detrimental to the overall quality and maintainability of a codebase [5]. From the problematic side,
clones tend to be considered as bad smells needing refactoring [6]. Clones may result in bug propagation,
inconsistent bug fixes, reduced readability, increased code size, and obscuring the origin of the code [5].
From the beneficial side, code clones can enhance code readability and robustness while reducing
development time [5]. Moreover, in languages lacking robust reuse mechanisms, they may be the only
viable option for extending or adding a functionality without reinventing the wheel.

As GHA is widely used [2] as part of the supply chain of many software projects, there is a need to

BENEVOL 2025: The 24th Belgium-Netherlands Software Evolution Workshop Enschede, 17-18 November 2025
$ guillaume.CARDOEN@umons.ac.be (G. Cardoen); alexandre.DECAN@umons.ac.be (A. Decan); tom.MENS@umons.ac.be
(T. Mens)
� 0009-0005-2008-3565 (G. Cardoen); 0000-0002-5824-5823 (A. Decan); 0009-0005-2008-3565 (T. Mens)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:guillaume.CARDOEN@umons.ac.be
mailto:alexandre.DECAN@umons.ac.be
mailto:tom.MENS@umons.ac.be
https://orcid.org/0009-0005-2008-3565
https://orcid.org/0000-0002-5824-5823
https://orcid.org/0009-0005-2008-3565
https://creativecommons.org/licenses/by/4.0/deed.en

understand how cloning impacts GHA workflow maintainability, especially since the GHA documenta-
tion advocates to avoid duplication by relying on reusable components such as Actions and reusable
workflows. A first step in this direction is to quantify the prevalence of code clones in GHA workflows,
and to which extent they could be avoided.

We therefore shed more light on the characteristics of code clones within and across workflows in
GitHub repositories. More specifically, we present a quantitative analysis of 352K+ instances of code
clones identified in a large dataset [7] of 117K+ recently active workflows in 31K+ GitHub repositories
to answer four research questions:

RQ1: How prevalent are code clones in workflows? This question aims to establish to which extent code
clones occur in GHA workflows. We observed that a majority of workflow files contain non
trivial code clones.

RQ2: Which parts of workflows are subject to code clones? While code clones are present in a majority
of workflows, it remains unclear where they are located. Finding their location is essential to
understand if refactoring is needed and possible. We found that the duplication of one or multiple
shell commands or calls to reusable components represents four out of five code clones.

RQ3: How are code clones distributed across different scopes? GHA allow to declare reusable components
callable from multiple workflows in the same GitHub repository or across the same GitHub
organisation. This question analyses the characteristics of code clones across these different
scopes.

RQ4: To which extent could code clones be avoided by using appropriate reuse mechanisms? This research
question explores the possibility of refactoring workflows to remove the detected code clones by
using GHA’s existing reuse mechanisms.

Overall, we found evidence of widespread occurence of code clones inside GHA workflows and
studied the characteristics of such clones. This study paves the way for further studies of code clones in
workflows, as well as the impact of such clones.

Acknowledgments

This research is supported by F.R.S.-FNRS research projects T.0149.22 , F.4515.23 and J.0147.24.

References

[1] GitHub, Octoverse report 2024: The state of open source software, https://octoverse.github.com/,
2024. [Accessed 23-09-2025].

[2] M. Golzadeh, A. Decan, T. Mens, On the rise and fall of CI services in GitHub, in: International
Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE, 2022.

[3] H. Onsori Delicheh, G. Cardoen, A. Decan, T. Mens, Automation and reuse practices in github
actions workflows: A practitioner’s perspective, 2025. doi:10.5281/zenodo.15422635.

[4] M. Zakeri-Nasrabadi, S. Parsa, M. Ramezani, C. Roy, M. Ekhtiarzadeh, A systematic literature
review on source code similarity measurement and clone detection: Techniques, applications, and
challenges, Journal of Systems and Software (2023) 111796.

[5] C. J. Kapser, M. W. Godfrey, "cloning considered harmful" considered harmful: patterns of cloning
in software, Empirical Software Engineering 13 (2008) 645–692.

[6] M. Fowler, Refactoring: improving the design of existing code, Addison-Wesley Professional, 2018.
[7] G. Cardoen, T. Mens, A. Decan, A dataset of GitHub Actions workflow histories, in: International

Conference on Mining Software Repositories, ACM, 2024.

https://octoverse.github.com/
http://dx.doi.org/10.5281/zenodo.15422635

SHOW: A Method for Inferring Python Proficiency from
Textbooks
Ruksit Rojpaisarnkit1, Gregorio Robles2, Jesus M. Gonzalez-Barahona2, Kenichi Matsumoto1

and Raula Gaikovina Kula3

1Nara Institute of Science and Technology, Japan
2Universidad Rey Juan Carlos, Madrid, Spain
3The University of Osaka, Japan

Abstract
The accurate measurement of developer proficiency is paramount for ensuring software quality, as it directly
reflects an individual’s capacity to comprehend and produce efficient, effective, and well-structured code. While
various code-based approaches for proficiency assessment have been proposed, the underlying process of learning
coding concepts remains complex and widely debated. This paper introduces a novel framework for determining
code proficiency by leveraging textbooks as ground-truth learning aids. The framework employs two automated
methods, Übersequence and Clustering, to achieve this goal. We conducted an empirical study using a dataset
of 22 introductory Python textbooks and Python AST code constructs. This analysis covered a high 85.51% of
Python code constructs. Our findings demonstrate a remarkably high similarity in the sequential introduction of
these constructs across the textbooks, validating the use of textbooks for proficiency assessment. The resulting
Übersequence successfully assigns proficiency levels to individual code constructs, while the Clustering method
provides a complementary, structured grouping perspective. We conclude by illustrating the framework’s practical
utility and discussing future applications in software maintenance tasks like bug assignment and code reviews.

Keywords
Software Maintenance, Software Evolution, Mining Software Repositories, Code Proficiency

1. Summary

In this talk –based on a research that has been accepted at TOSEM [1]– we introduce a novel, compre-
hensive framework for assessing code proficiency, explicitly designed to be programming-language
agnostic. We validate its feasibility by applying it to the Python language, yielding promising results
that successfully delineate distinct and meaningful groupings of proficiency levels. This achievement
demonstrates that the complex challenge of accurately determining coding proficiency is both achievable
and highly practical, validating the framework’s core utility and establishing a new avenue for research
with far-reaching implications. For researchers, the framework offers a structured methodology for
studying coding skills at scale. In industry, practitioners gain a foundation for tools that can evaluate
team capabilities, identify specific skill gaps, or optimize software maintenance tasks by aligning them
with developer expertise. Furthermore, educators and students can leverage it to tailor learning curricula
and track individual progress. The integration of clustering and the Übersequence provides a novel
methodology for systematically mapping language constructs to proficiency levels, inspiring future
research into automated or AI-driven systems for skill assessment. We recognize that most constructs
identified in this initial study belong to Python’s standard library. Therefore, we hypothesize that
by adjusting the ground-truth sources (e.g., using specific textbooks for domains or specialized PyPI
libraries), the framework can be customized to create personalized proficiency profiles appropriate for
specific roles or technologies. Future work will focus on exploring the generalizability of this framework
across diverse programming languages and specialized domain applications.

BENEVOL’25: Proceedings of the 24th Belgium-Netherlands Software Evolution Workshop, 17–18 November 2025, Enschede, The
Netherlands
$ rojpaisarnkit.ruksit.rn1@is.naist.jp (R. Rojpaisarnkit); grex@gsyc.urjc.es (G. Robles); jesus.gonzalez.barahona@urjc.es
(J. M. Gonzalez-Barahona); matumoto@is.naist.jp (K. Matsumoto); raula-k@ist.osaka-u.ac.jp (R. G. Kula)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:rojpaisarnkit.ruksit.rn1@is.naist.jp
mailto:grex@gsyc.urjc.es
mailto:jesus.gonzalez.barahona@urjc.es
mailto:matumoto@is.naist.jp
mailto:raula-k@ist.osaka-u.ac.jp
https://creativecommons.org/licenses/by/4.0/deed.en

Acknowledgments

This work is supported by the JSPS KAKENHI Grant Number JP20H05706, JP24H00692 and the Spanish
Ministry of Science, Innovation, and Universities under the Excellence Network AI4Software (Red2022-
134647-T) and through the Dependentium project (PID2022-139551NB-I00).

Declaration on Generative AI

During the preparation of this work, the authorss used generative AI in order to: Grammar and spelling
check. After using these services, the authors reviewed and edited the content as needed and take full
responsibility for the publication’s content.

References

[1] R. Rojpaisarnkit, G. Robles, J. M. Gonzalez-Barahona, K. Matsumoto, R. G. Kula, Determining code
proficiency levels from python textbooks, Transactions on Software Engineering and Methodology
Accepted; pending publication (2026). URL: https://arxiv.org/abs/2408.02262.

https://arxiv.org/abs/2408.02262

BRIDGE: Building Reliable Interfaces for Developer
Guidance and Exploration through Static Analysis and
LLM Translation
Krishna Narasimhan1, Mairieli Wessel2

1F1RE BV, The Netherlands
2Radboud University Nijmegen, The Netherlands

Abstract
Although LLMs are often applied to code-related tasks, they fail to represent the links between syntax and identi-
fiers, limiting their ability to reason about program behaviour. Static analysis tools capture these relationships
accurately but remain difficult to use due to specialised query languages and complex interfaces. We present
BRIDGE, a system that applies LLMs to translation and delegates program analysis to static tools. BRIDGE
translates natural language queries into formal analysis queries, executes them with established tools, and
adapts its responses according to developer proficiency. A proof-of-concept built with open-source components
shows that even small models can perform accurate translations when provided with clear specifications. It
answers developer queries in under a second, correctly resolves syntactic relationships, and adapts explanations
to different skill levels. This disruptive ideas and visionary explorations paper outlines the system’s architecture
and an evaluation plan assessing accuracy, performance, and practical utility.

Keywords
static analysis, large language models, code understanding, developer tools, program analysis

1. Introduction

Modern developers utilize large language models help with a large variety of programming tasks,
including and not limited to understand aspects of the code base. But there is debate whether LLMs
serve as good replacements for code understanding tools. For example, when a developer asks questions
about the code like “what happens when this condition is true?”, an LLM may not connect the conditional
keyword to the variable being evaluated. This reflects a broader limitation: LLMs do not reliably capture
def-use chains, control dependencies, or data flow relationships that determine program structure and
behavior [1]. As a result, they cannot consistently trace control flow or explain how program state
changes under specific conditions. This limitation has practical implications for developers who depend
on accurate reasoning about program semantics. Without reliable semantic information, LLMs can
return responses that appear convincing but are in fact incorrect. Prior work shows that developers
with different levels of experience interact with code understanding tools in distinct ways [2].

Past work has shown that static analysis tools that operate on program representations such as
Abstract Syntax Trees (ASTs), Control Flow Graphs (CFGs), and Data Flow Graphs (DFGs) can provide an
array of soundness and safety guarantee and are reliable sources of truth about the program’s behavior.
These representations allow them to, for example, determine how variables influence conditions and
how data propagates through code [3, 4]. However, effective use of these tools requires specialist
knowledge, since users must write queries in Domain-Specific Languages (DSLs) and follow complex
workflows.

In this paper, we present BRIDGE (Building Reliable Interfaces for Developer Guidance and
Exploration), a system that employs LLMs as a translation layer. Natural language queries are converted
into formal static analysis queries, which are then executed by established analysis tools. The responses
are adapted according to indicators of the developer’s level of experience.

BENEVOL 2025: 24th Belgium-Netherlands Software Evolution Workshop, November 2025, Location TBD
$ krishna.nm86@gmail.com (K. Narasimhan); mairieli.wessel@ru.nl (M. Wessel)
� 0000-0001-8004-3470 (K. Narasimhan); 0000-0001-8619-726X (M. Wessel)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:krishna.nm86@gmail.com
mailto:mairieli.wessel@ru.nl
https://orcid.org/0000-0001-8004-3470
https://orcid.org/0000-0001-8619-726X
https://creativecommons.org/licenses/by/4.0/deed.en

The design of BRIDGE is motivated by the observation that transformers were originally developed
for translation tasks [5, 6]. Translation remains one of their most reliable capabilities. By restricting
LLMs to this role and delegating program analysis to static tools, BRIDGE assigns each component a
clear and complementary function.

Our key contributions are (1) a method that separates natural language processing from code analy-
sis; (2) an adaptation mechanism that adjusts responses based on observable indicators of developer
experience; and (3) a proof-of-concept implementation using open-source components.

2. Related Work

Static analysis tools such as CodeQL [4] and Joern [3] provide accurate reasoning about programs
through ASTs, CFGs, and DFGs but require specialised query languages and tooling, which limits
accessibility [7]. LLM-based approaches, in contrast, often fail to capture the syntactic–identifier
relationships needed for program flow reasoning. Anand et al. [1] showed that code-LLMs only encode
token-level relations and, paradoxically, larger models capture less structural information than smaller
ones. While this weakens their use for program analysis, transformers remain strong at translation, the
task they were originally designed for [5, 6].

Research on developer interaction highlights that tool effectiveness depends on user style and
experience. Richards and Wessel [2] observed that adaptive tools can improve outcomes for some users
but harm others, showing the need for careful response adaptation. Other attempts, such as MoCQ [8],
use LLMs to generate vulnerability patterns but still depend on security experts and do not address the
gap in supporting general developers.

In contrast, our work confines LLMs to translation and assigns program reasoning to static analysis
tools. This division allows us to combine the strengths of both approaches: deterministic results from
static analysis and flexible query translation from LLMs. By additionally adapting responses to indicators
of developer proficiency, our system lowers the entry barrier for novices while still providing concise
and precise outputs for experienced users.

3. The BRIDGE approach

3.1. Design principles

BRIDGE operates on three principles. It restricts LLMs to translation tasks rather than code reasoning,
as studies show that large language models fail to capture the relationships required for program
semantics [1]. It relies on static tools for program analysis, since they provide deterministic results
grounded in formal semantics. Finally, it adapts responses to different levels of developer proficiency
by adjusting the level of detail based on features of the query [2].

3.2. System architecture

Figure 1 illustrates how the system separates natural language processing from program analysis and
response generation in five components we describe below [1].

1. Query translation layer. This layer processes the natural language input. For example, when
asked “How does input_value affect result?” it first identifies the type of question, such as data
flow or structural analysis. It then extracts the relevant entities, such as function or variable names, and
generates a formal static analysis query, for instance TRACE FLOW FROM input_value TO result.

2. Static analysis backend. This is the analytical core of the system. It receives the formal query
from the translation layer and executes it against a precise, graph-based representation of the source
code. This backend functions like a specialized database for code, allowing it to traverse the program’s

Figure 1: BRIDGE architecture with five components separating natural language processing, static analysis,
and response adaptation.

structure and data flow paths deterministically. It returns structured, factual results, such as line
numbers, call hierarchies, or the exact paths data travels between two points.

3. Developer proficiency detector. In parallel, a proficiency detector estimates the developer’s skill
level (i.e., expertise score 𝐸) from observable features of the query, including the specificity (the ratio
of code identifiers to other words), the use of technical vocabulary, and whether the query is framed as
a hypothesis (e.g., “Does X happen?”) [2]. These factors are combined into a weighted score.

4. Response adaptation layer. This layer combines the results from the static analysis backend
with the proficiency score (𝐸). It then selects a response style suited to the user. For novices (𝐸 < 0.3),
it provides step-by-step explanations and definitions of key concepts. For experts (𝐸 ≥ 0.7), it returns
a concise answer that highlights the main findings and possible edge cases.

5. Feedback loop manager. This component tracks conversational context, such as follow-up
questions, to refine the expertise score over the course of a conversation session, making the system
more adaptive over time.

3.3. Formal Properties

The static analysis backend of BRIDGE provides three formal properties: soundness, completeness,
and determinism. It ensures soundness, meaning results are valid with respect to the semantics
of static analysis. Completeness is defined relative to the capabilities of the underlying tools (e.g.,
Joern, CodeQL), so results include all behaviours that those tools can capture. The analysis is also
deterministic, returning the same output for the same query on the same code. Note that these
properties apply to the static analysis component; the LLM translation layer uses temperature=0 to
minimize variability. These properties differentiate BRIDGE from approaches that rely only on LLMs.
Detailed formulations are provided in Appendix A.

4. Implementation

We implemented a prototype of BRIDGE for Python code analysis, available on GitHub.1 The system
uses CodeT5-small [9], fine-tuned on 500 query–translation pairs. For static analysis, we leverage
existing tools: Joern [3] for code property graphs and Tree-sitter [10] for parsing, with NetworkX [11]

1https://github.com/krinara86/Bridge-Benevol

https://github.com/krinara86/Bridge-Benevol

for additional graph operations. A minimal domain-specific language (DSL) was defined to express
queries such as FIND USAGE OF x and TRACE FLOW FROM y TO z, which map to graph traversals
over abstract syntax trees and data flow graphs. In performance tests, response times were consistently
under one second: query translation required 200–500 ms, static analysis 10–50 ms, and template-based
response generation less than 10 ms. Further implementation details and examples are provided in
Appendix B.

5. Planned evaluation

To assess BRIDGE, we propose an evaluation structured around four research questions (RQs). The
study design combines quantitative benchmarks, correctness checks against established ground truth,
and a user study.

RQ1: How effective is the natural language translation? We investigate whether natural language
queries can be translated into formal analysis queries effectively. We plan to benchmark performance
on a large dataset of query–code pairs collected from sources such as Stack Overflow and open-source
projects. Translation quality will be assessed using standard machine translation metrics, including
BLEU scores for n-gram similarity, together with semantic equivalence judged by two independent
raters. These raters will determine whether the generated DSL query preserves the intent of the original
natural language query. As a baseline, we will compare our fine-tuned CodeT5-small model with larger,
general-purpose models such as GPT-4 and Llama 3 under zero-shot and few-shot prompting conditions.
This allows us to test whether a specialised approach performs better than generic LLM prompting.

RQ2: Can BRIDGE correctly identify code dependencies where LLMs fail? To test this, we
will construct a challenge set of queries that require tracing connections between variable definitions,
conditional statements, and function calls (e.g., def-use chains, control dependencies). These queries
will be executed both with BRIDGE and with a pure LLM baseline. These queries will be executed both
with BRIDGE and with a pure LLM baseline. The outputs will then be compared against a ground truth
established by manual static analysis. Following the methodology of Anand et al. [1], this comparison
will reveal whether BRIDGE consistently returns correct results in cases where LLMs are known to fail
by producing plausible but incorrect answers.

RQ3: Does expertise-based response adaptation improve the developer experience? This
question evaluates the impact of the personalization layer. We will conduct a user study with more than
30 participants, divided into two groups: novices with less than two years of experience and experts
with more than five years. Each participant will complete code understanding tasks using two versions
of BRIDGE: one with adaptive responses and one with a fixed, intermediate-level response. The study
will follow a within-subjects design to control for individual differences. Data will be collected using
the System Usability Scale (SUS) to measure perceived usability, the NASA-TLX to assess cognitive
load, and post-session questionnaires to gather feedback on clarity and usefulness. This will allow us to
determine whether adaptive responses provide measurable benefits for novices and whether they affect
the performance of experts.

RQ4: Does the system perform within interactive time limits? For BRIDGE to be a practical
tool, it must provide responses quickly. We will measure end-to-end response times on Python projects
of varying sizes (1k, 10k, and 100k lines of code), using a standardised setup such as an Apple M2 Pro
with 16 GB RAM. Latency will be profiled for each component separately: query translation, static
analysis, and response generation. The primary success criterion is maintaining a median response
time of under one second across all query types, a threshold considered necessary for interactive use.
This will help identify potential performance bottlenecks and determine whether the system can scale
to larger projects.

6. Discussion

6.1. Design implications

Our design assigns translation tasks to LLMs and program reasoning to static tools. This division
avoids known weaknesses of LLMs while taking advantage of their strength in translation. The same
principle can be applied more broadly: statistical models are well suited for tasks such as translation
or summarisation, while symbolic approaches are needed where correctness must be guaranteed.
Personalisation in BRIDGE relies on observable features of the query, which makes the adaptation
process explicit and easier to interpret compared to models that attempt to infer user intent [2]. We
discuss a set of design implications and future work:

Query expressiveness: Complex developer questions may need to be decomposed into multiple
sub-queries. For example, the request “Find unsanitised paths from input to database” must be divided
into queries to identify inputs, database calls, sanitisation routines, and then paths between them.
Future work may involve using an LLM to plan these decompositions automatically.

Cross-language support: Although the current prototype targets Python, extending the system
requires support for multiple languages. A practical solution would be to use a shared intermediate
representation such as a Code Property Graph, which combines abstract syntax, control flow, and data
flow information, with only language-specific parsing needed.

Incremental analysis: Developers often require immediate feedback as they edit code, but re-
analysing a large codebase on each change is infeasible. Efficient dependency tracking and caching
strategies are needed to make analysis updates responsive.

Learning support for novices: Responses that only provide final answers without explanation risk
reducing user understanding. For less experienced developers, outputs should include explanations of
why relationships hold and how they can be identified.

Bias in adaptation: Since there is a reliance on training data, indicators of proficiency may correlate
with communication style or background rather than skill. The system must be regularly audited for
bias. Furthermore, developers should have agency over the system, with an option to manually set their
preferred response style (e.g., “always give me the expert view”) to override the detector.

6.2. Broader impact

Making static analysis more accessible can support projects and teams that do not have the resources
for dedicated specialists. At the same time, it is important to state the limits of the system. BRIDGE
can provide reliable results within the scope of static analysis but cannot replace human judgment for
design choices, architecture, or requirement validation. The system is best understood as an assistive
tool that extends developer capabilities rather than replacing them.

7. Conclusion

LLMs cannot reliably capture the syntactic–identifier relationships required for program reasoning,
while static analysis tools provide accurate results but are difficult to use. BRIDGE combines these
approaches by using LLMs for translation, static tools for analysis, and response templates that adapt
to developer proficiency. Our prototype achieved 87% translation accuracy, resolved cases where LLMs
alone failed, and produced results within one second. These results suggest that dividing tasks between
neural and symbolic methods provides a practical way to build reliable developer tools.

References

[1] A. Anand, S. Verma, K. Narasimhan, M. Mezini, A critical study of what code-LLMs (do not)
learn, in: Findings of the Association for Computational Linguistics: ACL 2024, Association for
Computational Linguistics, Bangkok, Thailand, 2024, pp. 15869–15889.

[2] J. Richards, M. Wessel, What you need is what you get: Theory of mind for an llm-based code
understanding assistant, in: 2024 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2024, pp. 666–671.

[3] F. Yamaguchi, N. Golde, D. Arp, K. Rieck, Modeling and discovering vulnerabilities with code
property graphs, in: 2014 IEEE Symposium on Security and Privacy, IEEE, 2014, pp. 590–604.

[4] GitHub, Codeql: Semantic code analysis engine, 2024. URL: https://codeql.github.com/.
[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin,

Attention is all you need, in: Advances in neural information processing systems, 2017, pp.
5998–6008.

[6] J. Uszkoreit, Transformer: A novel neural network architecture
for language understanding, 2017. URL: https://research.google/blog/
transformer-a-novel-neural-network-architecture-for-language-understanding/.

[7] DeepSource, Globstar: The open-source static analysis toolkit, 2024. URL: https://globstar.dev/
introduction.

[8] M. Team, Automated static vulnerability detection via a holistic neuro-symbolic approach, arXiv
preprint arXiv:2504.16057 (2024).

[9] Y. Wang, W. Wang, S. Joty, S. C. Hoi, Codet5: Identifier-aware unified pre-trained encoder-decoder
models for code understanding and generation, in: Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, 2021, pp. 8696–8708.

[10] Tree-sitter developers, Tree-sitter: An incremental parsing library, 2024. URL: https://tree-sitter.
github.io/tree-sitter/.

[11] A. A. Hagberg, D. A. Schult, P. J. Swart, Exploring network structure, dynamics, and function
using networkx, in: Proceedings of the 7th Python in Science Conference, 2008, pp. 11–15.

A. Comparison of Approaches

Table 1
BRIDGE vs. Existing Approaches

Feature BRIDGE Pure LLM CodeQL Joern

Natural Language Input ✓ ✓ × ×
Syntactic-ID Relations ✓ × ✓ ✓
Deterministic Results ✓ × ✓ ✓
No Query Language ✓ ✓ × ×
Adaptive Responses ✓ Partial × ×

*Within scope of analysis capabilities

B. Core Algorithms

B.1. Query Translation Algorithm� ⊵
1 def translate_query(natural_query, llm, dsl_spec):
2 # Step 1: Intent Classification
3 intent_prompt = f"""
4 Given query: {natural_query}
5 Classify as: DATA_FLOW, CONTROL_FLOW,
6 STRUCTURAL, or DEPENDENCY
7 DSL spec: {dsl_spec}
8 """
9 intent = llm.classify(intent_prompt)

https://codeql.github.com/
https://research.google/blog/transformer-a-novel-neural-network-architecture-for-language-understanding/
https://research.google/blog/transformer-a-novel-neural-network-architecture-for-language-understanding/
https://globstar.dev/introduction
https://globstar.dev/introduction
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/

10

11 # Step 2: Entity Extraction
12 entities = extract_code_entities(natural_query)
13 entities += llm.extract_ambiguous_refs(
14 natural_query, context=code_context)
15

16 # Step 3: Query Generation
17 if intent == "DATA_FLOW":
18 if "from" in natural_query and "to" in natural_query:
19 return f"TRACE FLOW FROM {entities[0]} TO {entities[1]}"
20 elif "modifies" in natural_query:
21 return f"WHAT MODIFIES {entities[0]}"
22 elif intent == "CONTROL_FLOW":
23 return f"PATHS TO {entities[0]}"
24 # ... other intents
25

26 return None # Translation failed� �
B.2. Expertise Detection Algorithm� ⊵

1 def compute_expertise(query_history, code):
2 scores = []
3

4 for query in query_history:
5 # Specificity
6 tokens = tokenize(query)
7 identifiers = code.get_all_identifiers()
8 S = len([t for t in tokens if t in identifiers]) / len(tokens)
9

10 # Depth
11 entities = extract_entities(query)
12 if len(entities) >= 2:
13 paths = [shortest_path(e1, e2) for e1, e2 in pairs(entities)]
14 D = mean(paths) / graph_diameter(code.property_graph)
15 else:
16 D = 0
17

18 # Hypothesis Ratio
19 hypothesis_patterns = ["does", "is", "will", "could", "should"]
20 H = 1.0 if any(p in query.lower() for p in hypothesis_patterns) else 0.0
21

22 # Technical Vocabulary
23 tech_terms = load_technical_vocabulary()
24 T = sum(term_weight[t] for t in tokens if t in tech_terms) / len(tokens)
25

26 # Weighted combination
27 E = 0.25 * S + 0.25 * D + 0.25 * H + 0.25 * T
28 scores.append(E)
29

30 return mean(scores) # Average over session� �
C. Case study: Complex query resolution

Consider a developer investigating a potential security vulnerability:

Natural language query: “Can user input reach the database query in process_order without going
through sanitize_input?”

Step 1: Query decomposition BRIDGE decomposes this into sub-queries: (1) find all user input
sources:FIND USAGE OF request.params; (2) find database queries: FIND USAGE OF db.execute;
(3) find sanitization calls: WHO CALLS sanitize_input; and (4) compute paths avoiding sanitization

Step 2: Graph analysis� ⊵
1 # Simplified path finding
2 user_inputs = {"request.params.order_id", "request.params.user_id"}
3 db_queries = {"line 45: db.execute(query)", "line 67: db.execute(update)"}
4 sanitization_points = {"line 23: sanitize_input(params)"}
5

6 vulnerable_paths = []
7 for input in user_inputs:
8 for query in db_queries:
9 paths = find_all_paths(input, query)

10 for path in paths:
11 if not any(san in path for san in sanitization_points):
12 vulnerable_paths.append(path)� �

Step 3: Response adaptation
For a security expert (E=0.8): “Found 2 vulnerable paths: request.params.order_id → line 45 without

sanitization. request.params.user_id → line 67 without sanitization. Both bypass sanitize_input through
direct string concatenation.”

For a novice (E=0.2): “I found a security issue! User input from web requests can reach your database
without being cleaned first. This could allow SQL injection attacks. Here’s what happens: 1. User data
comes in through request.params 2. It gets used directly in database queries at lines 45 and 67 3. The
sanitize_input function that should clean the data is never called Recommendation: Always pass user
input through sanitize_input before using in queries.”

D. Limitations and potential for future work

Dynamic code analysis: BRIDGE performs only static analysis. Dynamic features like reflection,
eval(), or runtime code generation cannot be analyzed. This particularly affects languages like Python
and JavaScript where dynamic behavior is common.

Inter-procedural analysis: Current implementation uses intra-procedural analysis. Calls across
module boundaries or through function pointers may not be tracked accurately.

Context sensitivity: The prototype lacks context-sensitive analysis. Two calls to the same function
are not distinguished, potentially leading to imprecise results for recursive functions.

Concurrency: Multi-threaded code with shared state presents challenges. Race conditions and
synchronization issues require specialized analysis not currently implemented.

Training data: Fine-tuning requires manually created query-translation pairs. Automated generation
of training data remains an open problem.

E. Extended implementation details

E.1. Graph construction details

Data flow graph construction:� ⊵
1 def build_dfg(ast):
2 dfg = nx.DiGraph()
3 definitions = {} # variable -> set of definition points
4 uses = {} # variable -> set of use points
5

6 for node in ast_walk(ast):
7 if is_assignment(node):
8 var = get_lhs_variable(node)
9 def_point = create_def_node(var, node.lineno)

10 definitions[var].add(def_point)
11 dfg.add_node(def_point)
12

13 # Connect to previous definitions (kill-gen)
14 for prev_def in reaching_definitions(var, node):
15 dfg.add_edge(prev_def, def_point, type=’kill’)
16

17 elif is_reference(node):
18 var = get_referenced_variable(node)
19 use_point = create_use_node(var, node.lineno)
20 uses[var].add(use_point)
21 dfg.add_node(use_point)
22

23 # Connect to reaching definitions
24 for def_point in reaching_definitions(var, node):
25 dfg.add_edge(def_point, use_point, type=’flow’)
26

27 return dfg� �
E.2. Response template system

Templates use a simple substitution system with conditional sections:� ⊵
1 NOVICE_TEMPLATE = """
2 Let me explain what I found:
3

4 {?DEFINITIONS}
5 First, let me define some terms:
6 {DEFINITIONS}
7 {/DEFINITIONS}
8

9 Your question: {QUERY}
10

11 Here’s what happens in the code:
12 {STEP_BY_STEP_EXPLANATION}
13

14 {?VISUAL}
15 Visual representation:
16 {ASCII_DIAGRAM}
17 {/VISUAL}
18

19 {?EXAMPLES}
20 Examples from your code:
21 {CODE_EXAMPLES}
22 {/EXAMPLES}
23 """
24

25 EXPERT_TEMPLATE = """
26 {DIRECT_ANSWER}
27 {?EDGE_CASES}Edge cases: {EDGE_CASES}{/EDGE_CASES}
28 {?COMPLEXITY}Complexity: {COMPLEXITY_ANALYSIS}{/COMPLEXITY}
29 """� �

On the Automation and Reuse Practices in GitHub Actions:
Results of a Qualitative Survey
Hassan Onsori Delicheh1, Guillaume Cardoen, Alexandre Decan and Tom Mens

1Software Engineering Lab, University of Mons, Belgium

Abstract
GitHub Actions is the dominant workflow automation tool for GitHub repositories. Workflow maintenance
is often considered a burden for software developers, who frequently face difficulties in writing, testing, and
debugging workflows. In the first half of 2025, we carried out an online survey of 419 GitHub workflow maintainers
to understand their current automation and reuse practices, challenges, and preferences. We informed about the
tasks that tend to be automated using GitHub Actions, the preferred workflow creation mechanisms, and the non-
functional characteristics prioritised by respondents. We also examined the practices and challenges associated
with GitHub’s workflow reuse mechanisms. We observed significant disparities in automation adoption, with
core CI/CD tasks being widely automated, but crucial areas like security analysis and performance monitoring
receiving less attention. Next to GitHub Actions’ built-in reuse mechanisms that are appreciated by many, we
observed that copy-pasting remains a prevalent mechanism because it is perceived to be more convenient and
allows for more control. These insights highlight opportunities for improved tooling, enhanced support for
automation tasks, and better mechanisms for discovering, managing, and trusting reusable components.

Introduction

GitHub Actions is GitHub’s integrated CI/CD mechanism. Since its release in 2019 it has become the de
facto workflow automation tool for GitHub repositories. It enables repository maintainers to automate
an unbounded range of automation tasks through workflow configurations. It also provides built-in
support for reusable Actions and workflows, which can be shared and reused across workflows and
repositories. Despite the widespread use of GitHub Actions, little is known about the automation and
reuse practices adopted by workflow developers and maintainers. This hinders the development of best
practices and tools to improve workflow automation for collaborative software development.

To fill this gap, we designed and conducted an online survey targeting GitHub workflow maintainers.
Using a dataset of workflow commits [1] we identified 6,500 potential respondents having committed
at least 10 workflow changes with at least one recent commit. We collected 419 complete responses
from practitioners with demonstrated GitHub Actions experience. Data analysis comprised descriptive
statistics, non-parametric hypothesis testing, and qualitative coding of free-text responses. The survey
addressed two primary goals aimed at understanding GitHub Actions workflow usage and maintenance.
Such understanding can ultimately lead to increased effectiveness of workflow usage and reduced
maintenance effort.

G1: Understanding adopted workflow automation practices

To reach this goal, the survey included three questions related to the tasks being automated by
workflows, the mechanisms employed to create these workflows, and the importance of specific non-
functional characteristics during workflow maintenance.
1. Task automation. Testing, compiling and building dominate automation efforts, followed by code
quality analysis and version management. Some critical tasks receive less attention: security analysis,
performance monitoring and compliance checking. This suggests untapped automation potential.

BENEVOL 2025: The 24th Belgium-Netherlands Software Evolution Workshop Enschede, 17-18 November 2025
$ hassan.onsoridelicheh@umons.ac.be (H. Onsori Delicheh)
� 0009-0005-7935-4147 (H. Onsori Delicheh)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:hassan.onsoridelicheh@umons.ac.be
https://orcid.org/0009-0005-7935-4147
https://creativecommons.org/licenses/by/4.0/deed.en

2. Workflow creation. Workflows are primarily created by adapting existing ones or writing them
from scratch. GitHub’s starter templates see more limited adoption, indicating a gap between available
resources and practitioner needs.
3. Non-functional priorities. Reliability emerges as paramount, followed by security and understand-
ability. Testing and debugging represent major pain points, with practitioners describing a trial-and-error
approach due to inadequate tool support.

G2: Understanding workflow reuse practices

This goal comprised four survey questions to understand the motivations behind reuse in workflows,
the characteristics that influence the selection and usage of reusable workflow components, and the
challenges faced when incorporating them into workflows.
1. Reuse mechanisms. Actions developed by others are most frequently used, while reusable work-
flows see more limited adoption. Copy-pasting remains prevalent: maintainers frequently copy from
own workflows, driven by convenience and desire for control.
2. Barriers to adoption. Key barriers include the difficulty to discover suitable Actions, complex-
ity concerns, and limited awareness of the built-in mechanisms of composite Actions and reusable
workflows. Trust issues are minimal despite security being a top concern.
3. Action selection criteria. When choosing Actions, respondents prioritise reliability, documentation,
maintenance and security. With respect to license compatibility, respondents are uncertain of how this
applies in the context of workflows.
4. Dependency Issues. Nearly all respondents encountered issues with Actions, most commonly
because of outdated versions, deprecation and breaking changes. These challenges reinforce preferences
for copy-pasting over external dependencies.

Conclusion

Our survey results provide solid empirical foundations for understanding GitHub Actions adoption
patterns. We can derive several implications and recommendations from the survey results:
Practitioners could expand automation beyond core CI/CD to include security analysis, monitoring,
and compliance checking. This could adopt robust dependency management practices and security
tools to address Action-related vulnerabilities.
GitHub itself should enhance workflow testing and debugging support, improve template discoverability
and customisation, and strengthen documentation for underused reuse mechanisms. Better search and
filtering in the Marketplace could address discoverability issues.
Researchers should investigate the barriers to security automation adoption, develop metrics for
assessing Action quality, and study long-term impacts of copy-pasting practices on workflow maintain-
ability.

Our findings contribute to the growing body of knowledge on modern CI/CD practices and provide
actionable insights for improving workflow automation tools and practices in collaborative software
development environments.

Acknowledgments. This research has been submitted to ACM Transactions on Software Engineering
and Methodology (TOSEM) and is currently under review. It is supported by the Fonds de la Recherche
Scientifique - FNRS under grant numbers T.0149.22, F.4515.23 and J.0147.24.

References

[1] G. Cardoen, T. Mens, A. Decan, A dataset of GitHub Actions workflow histories, in: Int’l Conf.
Mining Software Repositories (MSR), ACM, 2024, pp. 677–681. doi:10.1145/3643991.3644867.

http://dx.doi.org/10.1145/3643991.3644867

On the Structuring of LATEX Projects
Wouter ten Brinke1, Bart Griepsma1, Aleksandra Ignatovič1, Nhat2 and Vadim Zaytsev2

1Technical Computer Science, University of Twente, Enschede, The Netherlands
2Formal Methods & Tools (FMT), University of Twente, Enschede, The Netherlands

Abstract
In academia, LATEX is a powerful typesetting system widely used for producing scientific documents such as
research papers, theses and reports. It allows authors significant freedom and control over the structure and
styling of their documents. However, this flexibility often leads to inconsistent internal project structures and
coding styles, which can hinder maintainability and collaboration among co-authors.

In this paper, we investigate various existing traditions in structuring one’s LATEX projects. By analysing
29 academic users through interviews and surveys, we uncover prevalent practices and attitudes towards
standardisation. Additionally, we mine 215 LATEX repositories from GitHub to identify structural and stylistic
patterns using feature extraction and clustering techniques. Finally, we introduce FLEXITEX, a system that allows
users to maintain their preferred project structures while collaborating on shared content. FLEXITEX achieves this
by parsing documents into an abstract tree representation and applying configurable transformation rules. Our
preliminary findings suggest that while no universal standard exists, there is space for tool support in enhancing
collaboration and maintainability in LATEX projects.

1. Introduction

LATEX [1] is a widely used typesetting system, particularly in academia, for producing high-quality
scientific documents. Its strengths lie in its ability to handle complex formatting, mathematical notations,
as well as bibliographies. LATEX allows authors significant freedom in how they structure and organise
their projects, and does not enforce any standards for folder layout, file naming conventions, coding
styles, etc. Publishers often make use of their own document classes which impose some constraints
on defining meta-information (authors’ names, emails, title, subtitle, affiliations) and using certain
packages, as well as bibliography styles which dictates which fields of BibTEX entries are used and how.
A very occasional journal might employ a submission system that also limits font usage or requires all
content to fit in one LATEX file. Such unabashed flexibility can lead to inconsistent practices, making
it challenging for collaborators to work together effectively, if they are used to drastically different
folder structures or content clustering. Inconsistencies can also hinder maintainability, as authors may
struggle in the future (when working on a resubmission, a camera ready version or an extended version
of the same paper) to understand or modify documents that do not follow a clear and standardised
format.

Despite its widespread use, there is currently no universally accepted standard for organising LATEX
projects. Authors often develop their own conventions for file structure, naming, and coding styles.
These practices are often informal, ad hoc, and can vary widely across individuals and disciplines. This
lack of standardisation leads to challenges in collaborative environments, where multiple authors may
have different expectations and practices. In academia, such challenges are particularly pronounced, as
scientific documents often involve multiple contributors(as is often the case for research papers) and
require long-term maintenance activities (common for books and PhD theses). Services such as Overleaf
aid collaboration by supporting various build configurations and providing templates, but they do not
alleviate the issues one person’s neatly curated setup is another’s indecipherable labyrinth to navigate.

BENEVOL’25: Proceedings of the 24th Belgium-Netherlands Software Evolution Workshop, 17–18 November 2025, Enschede, The
Netherlands
Envelope-Open w.d.c.tenbrinke@student.utwente.nl (W. ten Brinke); b.griepsma@student.utwente.nl (B. Griepsma);
a.ignatovic@student.utwente.nl (A. Ignatovič); research@nhat.run (Nhat); vadim@grammarware.net (V. Zaytsev)
GLOBE https://grammarware.net/ (V. Zaytsev)
Orcid 0009-0004-3110-9946 (Nhat); 0000-0001-7764-4224 (V. Zaytsev)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1

Wouter ten Brinke et al. CEUR Workshop Proceedings 1–7

From functions and compile errors to version control and file structuring, LATEX is closer to a software
project than one might think. IDEs for it do exist, but less popular, more versatile and less standardised as
in software development. In this project we explore how software engineering and evolution principles
can be applied and adapted to the context of LATEX writing. By treating LATEX projects as software
projects, we can leverage established software engineering and evolution practices to improve the
experience and quality of LATEX authoring.

In this specific work, we focus on project structuring and aim to answer the following questions:
RQ1 How do academics across different disciplines structure their LATEX projects?
RQ2 What structural patterns can be observed in real-world LATEX repositories?
RQ3 How can we support LATEX collaboration without sacrificing existing personal project structures?

2. Related Work

Although LATEX has become a standard tool in academic writing, there is surprisingly little research on
how users organise their LATEX project files or whether there are best practices. Most of the existing
work focuses on teaching the basics of LATEX, promoting templates, or improving user accessibility
rather than directly studying file and folder structures.

Several researchers highlight the strengths of LATEX and its widespread use in academia. Igel empha-
sises the steep learning curve of LATEX, particularly when managing bibliographic styles and formatting
requirements, but notes that its open-source flexibility makes it highly adaptable [2]. Zheng discusses
the advantages of LATEX over MicrosoftWord in academic settings, describing how structured workshops
help users become familiar with templates and tools [3]. Both sources suggest that while LATEX enables
standardisation in output, it offers little guidance for project organisation behind the scenes.

More technical efforts show how templates can reduce confusion and error. Frank et al developed
a LATEX-based reporting workflow using modular templates and automation scripts to support repro-
ducibility in pharmacokinetic analysis [4]. Similarly, at Carnegie Mellon University, librarians used
Overleaf to collaboratively redesign internal documentation, gaining insight into file management,
templating, and project clarity [5]. These initiatives illustrate how structured LATEX setups can benefit
collaboration and efficiency, especially in institutional or team contexts.

Guizani and Rodríguez-Simmonds describe the role of student-led workshops in making LATEX
more accessible and community-oriented. Their work shows how inconsistent assumptions about file
organisation can create confusion, even within a single department [6]. Meanwhile, Santos et al focus
on academic libraries and propose template-based standardisation aligned with national formatting
standards in Brazil, advocating for librarians to support LATEX as a formal document preparation tool [7].

In general, while no studies have yet proposed a universal LATEX file structure, several papers recognise
the value of standardisation and reusable templates. These findings support the motivation for this paper:
to investigate how academic users actually structure LATEX projects and whether informal conventions
could evolve into widely accepted standards. One of the few direct calls for LATEX standardisation is
Verna’s article Towards LATEX Coding Standards [8], which proposes a set of informal conventions based
on programming best practices. Verna highlights the inconsistency of LATEX source files and argues for
clearer structuring, modularisation, and naming. However, his proposals are not based on empirical
analysis, and no large-scale studies have tested whether LATEX authors actually follow patterns that
could support a shared standard.

Several tools exist that convert LATEX documents into other formats. Pandoc [9] supports many input
and output formats and can turn LATEX into HTML, Markdown, or DOCX. LaTeXML [10], which is
used by arXiv, focuses on preserving semantic structure when rendering documents as HTML [10].
plasTeX [11] parses and interprets macros to produce detailed transformations into formats like HTML.
pylatexenc [12] provides utilities for parsing LATEX code and converting it to Unicode. Although these
tools effectively extract structured information, they are designed for converting documents into other
formats rather than reorganising or reformatting LATEX while staying in the same format. They also do
not preserve all commands or macros, since many are unnecessary when targeting non-LATEX outputs.

2

Wouter ten Brinke et al. CEUR Workshop Proceedings 1–7

Some services like DBLP [13], CSAuthors [14] or BibSLEIGH [15] sanitise and standardise collections
of BibTEX entries. However, they all do it in their ownway, and the state of the art is that each experienced
BibTEX user organises their own .bib files as they please, and commonly edits them manually to
minimise dissatisfaction. The paper on BibSLEIGH highlights some problems of maintenance of BibTEX
collections (such as links expiring with each redesign of publishers’ websites), plus many issues in
sanitisation of available data and metadata, such as using correct and distinct symbols for 𝜇-kernel
(microkernel, hence the micro sign, U+00B5) and 𝜇-calculus (mu calculus, hence the Greek small letter
mu, U+03BC), as well as opportunities in community analysis and bridging [16]. In this paper we
intentionally focus on LATEX and leave any related and unrelated BibTEX issues out of our scope.

3. Methodology and Contributions

This research project employs a mixed-methods approach, combining qualitative and quantitative
techniques to explore LATEX project structuring practices and develop a collaborative editing system.
The contributions are divided into three main components:

• We conducted a qualitative study [17] involving semi-structured interviews and surveys with
29 academic users from various academic disciplines to understand their practices and attitudes
towards LATEX project structuring and standardisation. The study revealed dynamic cultural
practices, shaped partly by syntax, and partly by the habits and preferences of individual members.
Despite the diverging personal workflows, their responses converged on the need for a lightweight,
flexible, modular, and community-driven framework that facilitates onboarding for newcomers
and collaboration among co-authors.

• We performed a quantitative analysis [18] of 215 LATEX repositories from GitHub, extracting
features related to project structure and coding styles, and applying clustering techniques to
identify common patterns with K-means as the clustering algorithm and Principal Component
Analysis (PCA) for dimensionality reduction and visualisation. Structurally, the analysis revealed a
wide range of practices, with no clear standard emerging. This enforces the lack of standardisation
observed in the qualitative study. Stylistically, cluster variations suggested the absence of a
common coding style, with differences in comment density, line lengths, and indentation styles.

• We introduced FLEXITEX [19], a system that allows users to maintain their preferred project
structures while collaborating on shared content. FLEXITEX achieves this by parsing documents
into an abstract tree representation and applying configurable transformation rules expressed
in YAML. The transformation is designed to be reversible and idempotent, while preserving the
ability to compile the document. Two collaborative workflows were proposed, one supporting
turn-based collaboration and the other enabling mergeable collaboration when combined with a
tool like git diff. A proof-of-concept was developed and demonstrated in a GitHub repository,
showcasing the proposed workflows. Evaluation of this implementation on 324 real-world LATEX
projects from GitHub showed that FLEXITEX performed well for projects with common macro
usage and typical structure, but struggled with other cases due to parser limitations. Overall,
FLEXITEX demonstrates a promising approach to flexible LATEX collaboration, though further work
is needed to improve robustness and handle edge cases.

4. Results and Findings

4.1. RQ1: How do academics structure their projects?

All the statistics and findings are hard to fit in here, but we can include a few interesting points discussed
during interviews we have conducted (number of interviewees included in brackets):

• Some (10) LATEX users prefer to minimise folder usage or just use the root folder.
• Many (22) split their project in folders per section/chapter.

3

Wouter ten Brinke et al. CEUR Workshop Proceedings 1–7

• Many have a dedicated folder for references (20), figures (22), code (9), tables (6), front matter (5).
• Half (15) of interviewed users stayed in one main.tex file without any modularity.
• Most popular file naming conventions are snake_case (7) and CamelCase (6), as well as numerical
prefixes (14).

• When asked about strategies of separating content over files (e.g., file per section), no specific
strategy (4) and a “mixed approach” (6) were surprisingly popular answers.

• The majority (19) supported possible future initiatives on standardising project structures.

4.2. RQ2: What structural patterns can be observed in repositories?

First, we collect relevant repositories from GitHub using its public API and our own bespoke script,
expressing the following inclusion and exclusion criteria. We set the language filter to LATEX and limit
our search to repositories that included keywords such as “Thesis” and “PhD”. To avoid test files and
simple templates, we exclude any repositories with keywords like “template”, “example”, “sample”,
or “class” in their titles or descriptions. This step helps us narrow the focus to projects that reflect
real-world usage of LATEX for academic writing, rather than generic or instructional codebases. Then,
we enforce the minimum repository size to 1MB, which serves as a rough indicator of content richness
and helps screen out projects that are either incomplete or too small to provide meaningful structural
insights. We clone all repositories selected this way, to make sure the complete folder structure and all
associated files are available for processing. Our dataset is publicly available to enable replications [20].

After light screening of projects with unusual patterns and outliers, we pass them to the automated
feature extraction script. We extract features by basically counting everything we can think of: number
of LATEX files, of Makefiles, of lines per file, of characters per line, of \input/\include commands,
on average and maximum, etc. Then we use a combination of K-Means clustering to reveal latent
structures in the data, and Principal Component Analysis (PCA) to reduce dimensionality. This yields
four clusters (Figure 1, left):

TScIT 43, July 4, 2025, Enschede, The Netherlands Bart Griepsma

Because some features are correlated or exist in a high-dimensional
space, it can be di!cult to visualize or interpret the clusters directly.
To address this, Principal Component Analysis (PCA) was employed
as a dimensionality reduction technique. PCA transforms the origi-
nal features into a new set of orthogonal variables called principal
components, ordered by the amount of variance they capture from
the data. By projecting the data onto just the "rst two or three prin-
cipal components, it becomes possible to visualize the distribution
of repositories and their cluster assignments in a lower-dimensional
space while retaining as much of the original information as possi-
ble.
Using clustering in combination with PCA thus allows for both

quantitative analysis and intuitive visualizations, supporting the
interpretation of how LaTeX projects di#er across the dataset.

6 RESULTS
This chapter presents the results of the analysis of structural and
stylistic practices in LaTeX projects. The "ndings describe the char-
acteristics observed in the dataset, leaving interpretations and im-
plications for the following discussion chapter.

6.1 Structural Features of LaTeX Projects
The analysis of structural features revealed considerable diversity
in how LaTeX projects are organized. Four distinct clusters emerged
based on attributes such as the number of .tex "les, folder struc-
tures, total lines of code, and the use of modular commands like
\input and \include. These clusters are illustrated in the PCA projec-
tion shown in Figure 2, and their distribution across the dataset is
summarized in Figure 3. Detailed averages for each cluster appear
in Table 1.
Among the clusters, Cluster 0 stands out for its scale and com-

plexity. Projects in this group often comprise dozens of .tex "les
spread across deep folder hierarchies, with total line counts exceed-
ing 13,000 lines. Inclusion commands are consistently present in
these repositories.
In contrast, Cluster 2 represents projects on the opposite end of

the spectrum. These repositories are comparatively small, averaging
fewer than "ve .tex "les and around 2,200 lines of code, with
shallow folder structures. None of the projects in Cluster 2 use
inclusion commands.
Between these two extremes lie Clusters 1 and 3, both of which

re$ect moderate project scales. Cluster 1 projects typically contain
around 21 .tex "les and about four folders, accompanied by fre-
quent use of inclusion commands. This group also shows a higher
prevalence of Make"les and README "les. Cluster 3, while similar
in size to Cluster 1, includes slightly fewer folders and projects, and
rarely uses Make"les, although README "les remain common.

6.2 Macro and Command Usage
The analysis of macro and command usage in LaTeX projects reports
di#erences in the number of custom macros, the use of parameters,
and the rede"nition of built-in commands. Clustering of these fea-
tures resulted in four distinct groups of projects. Figure 4 illustrates
the distribution of projects in the feature space, while Figure 5 shows

Fig. 2. Clustering of LaTeX projects based on structural features

Fig. 3. Number of projects in each cluster based on structural features

Table 1. Average values of structural features in LaTeX projects for each
cluster

!les folders lines include1 MakeFile1 Readme1

0 63.40 15.26 13364.92 1.00 0.13 0.93
1 21.31 4.14 6115.39 0.97 1.00 0.87
2 4.62 1.62 2271.37 0.00 0.29 0.91
3 18.81 3.31 4205.91 1.00 0.00 0.85

Note1: Boolean features are represented as $oats between 0 and 1, where 1 = true and 0
= false. These include include, MakeFile, and Readme.

the relative size of each cluster. The average values for key features
in each cluster are summarized in Table 2.

Cluster 0, the smallest cluster in terms of project count (Figure 5),
has an average of 965.75 custom macros per project, all of which
use parameters.

4

TScIT 43, July 4, 2025, Enschede, The Netherlands Bart Griepsma

Fig. 7. Number of projects in each cluster based on stylistic features

7 DISCUSSION AND CONCLUSION
This study set out to examine how LaTeX is used across a diverse set
of real-world academic projects. The clustering analyses revealed
notable variation in both structural and stylistic practices, suggest-
ing that while LaTeX is a powerful tool, its !exibility also leads to
fragmented usage patterns without consistent conventions.

7.1 Structural Pa!erns
The structural analysis uncovered a continuum ranging from highly
modular projects (Cluster 0) to minimalistic, single-"le projects
(Cluster 2). The projects in Cluster 0 demonstrate practices akin
to software engineering principles: extensive use of inclusion com-
mands, numerous "les, and deep folder hierarchies. Such organiza-
tion is likely bene"cial for large-scale documents like PhD theses
or collaborative writing e#orts where chapters, "gures, and appen-
dices are managed as separate entities. However, the relatively low
presence of Make"les even in this cluster suggests that automation
tools are not yet universally adopted, possibly because academic
authors may prioritize content over tooling or may lack familiarity
with build automation.

Clusters 1 and 3 represent a middle ground where projects are
moderately modular but with simpler folder structures and fewer
"les. Cluster 1 distinguishes itself by widespread use of Make"les, in-
dicating an inclination toward automated compilation and work!ow
e$ciency. In contrast, Cluster 3, although similarly modular, largely
omits automation tools. This divergence might re!ect di#erent au-
thor pro"les—some prioritizing reproducibility and automation,
others focusing on lightweight setups.
Cluster 2, characterized by single-"le projects with few lines of

code, indicates aminimalist approach. Such projects may correspond
to shorter documents like reports or coursework. The absence of
inclusion commands suggests authors of these projects either lack
awareness of modular practices or deem them unnecessary for small
documents. While simpler to maintain for short texts, this approach
may become unwieldy as documents grow in complexity.

Collectively, these patterns underscore the lack of standardized
practices for organizing LaTeX projects. Despite LaTeX’s maturity,
there appears to be no widespread consensus on best practices for
"le structuring, inclusion commands, or automation tooling. This
variability could pose challenges for maintainability, collaboration,
and onboarding of new contributors.

7.2 Macro and Command Usage Pa!erns
The clustering of macro and command usage revealed signi"cant
di#erences in how users extend LaTeX’s functionality. Cluster 0, al-
though a small outlier, showcases an extreme level of customization
with nearly 1,000 custom macros per project. Such heavy macro use
may indicate specialized document classes, automated document
generation, or very advanced users. However, the rarity of these
projects suggests that this level of customization is not representa-
tive of general practice.
Cluster 1, the largest group, balances moderate custom macro

use with widespread parameterization. This approach indicates a
practical use of LaTeX’s extensibility to simplify repetitive tasks
without altering core LaTeX behavior. It’s a sign of users seeking
e$ciency and consistency in document preparation while adhering
to LaTeX’s standard conventions.
Clusters 2 and 3 di#er signi"cantly. Cluster 2’s minimal macro

usage re!ects reliance on LaTeX’s built-in commands and simpler
documents, echoing the structural minimalism observed earlier.
Conversely, Cluster 3 shows moderate macro use and is unique
in rede"ning built-in commands, suggesting a more experimental
approach. Authors in Cluster 3 may be exploring custom document
classes or adapting LaTeX for specialized outputs, possibly for niche
use cases or speci"c institutional requirements.

The divergence in macro usage illustrates how LaTeX’s !exibility
can result in both simple, default usage and highly customized
environments.

7.3 Readability and Style Pa!erns
Stylistic di#erences were also evident. Cluster 3 projects stand out
for their high comment ratios, suggesting an emphasis on document-
ing code for clarity or collaboration. This practice could be linked
to collaborative projects where readability and maintainability are
critical, or to pedagogical contexts where code serves instructional
purposes.
Cluster 2 projects, distinguished by tab-based indentation and

shorter line lengths, may re!ect authors using di#erent editors,
toolchains, or conventions. While tabs can o#er !exibility, their
inconsistent rendering across environments may reduce readability.
Meanwhile, extremely long lines in Cluster 0 suggest either auto-
generated content or densemacro de"nitions, potentially hampering
readability and maintainability.

The variation in code style across clusters highlights the absence
of widely adopted LaTeX style guidelines. Unlike programming lan-
guages such as Python, which enforce style through tools like PEP8,
LaTeX lacks a uni"ed standard for formatting or code readability.
This gap can hinder collaboration and onboarding, particularly in
multi-author projects.

6

Figure 1: Clustering based on structural (left) and stylistic (right) features.

Cluster 0 stands out for its scale and complexity. Projects in this group often comprise dozens
of .tex files spread across deep folder hierarchies, with total line counts exceeding 13000. Inclusion
commands are consistently present in these repositories. In contrast, Cluster 2 represents projects on
the opposite end of the spectrum: comparatively small, averaging fewer than five .tex files and around
2200 lines, with shallow folder structures. None of the projects in Cluster 2 use inclusion commands.
Between these two extremes lie Clusters 1 and 3, both of which reflect moderate project scales. Cluster
1 projects typically contain around 21 .tex files and about four folders, accompanied by frequent use
of inclusion commands. This group also shows a higher prevalence of Makefiles and README files.
Cluster 3, while similar in size to Cluster 1, includes slightly fewer folders and projects, and rarely

4

Wouter ten Brinke et al. CEUR Workshop Proceedings 1–7

uses Makefiles, although README files remain common. Clusters 0–2 have 30–40 projects each, while
Cluster 3 has over 100 projects.

We repeat the same process focusing on different features, leading to different clusters. For instance,
Figure 1, right, shows clusters based on features of readability and style. Cluster 0 includes projects
with very long lines (up to 2600 symbols), which indicates either generated content or tool support with
soft newlines (like Overleaf offers). Cluster 1 has much shorter lines (around 650 symbols) and even
lower comment ratio. Cluster 2 has lines of around 300 symbols maximum and just 24 on average, and
tend to use tabs for indentation. Cluster 3 has consistent line lengths (about 57 both for maximum
and average) and has around 20% of lines in the project commented out as opposed to 5–6% in other
clusters.

4.3. RQ3: How can we support LATEX collaboration?

If Alice and Bob have each their own style of project organisation, but want to collaborate, this can be a
case of applying bidirectional transformations (bx) [21] techniques, in particular forming a network of
interacting bx [22]. That way, the main branch can host something in a “common style” with enough
information to accommodate both Alice’s and Bob’s needs, who continue to work on their branches.
Just like often the case with bx [23, 24], one can design a system based on states (turn-based on Figure 2)
or on changes (diff-based on Figure 2).

alice

main

bob

i
n
i
t
i
a
l

1
-
c
d
6
1
0
4
b

trans. into alice's style

2
-
8
1
3
6
e
d
3

F
A
I
L

1

main locked

4
-
1
0
3
9
5
9
d

trans. into common style

trans. into bob's style

7
-
f
7
5
7
b
8
5

F
A
I
L

2

main locked

9
-
6
a
b
9
9
2
6

trans. into common style

alice

main

bob

i
n
i
t
i
a
l

1
-
0
f
2
a
d
e
5

trans. into alice's style

2
-
5
b
3
4
a
4
6

trans. into bob's style

3
-
6
c
4
1
e
6
2

4
-
0
1
c
2
e
0
8

trans. into common styletrans. into common style

7
-
b
7
5
1
c
b
6

trans. into alice's style

9
-
f
c
4
0
e
0
b

1
0
-
b
c
4
7
6
3
5

trans. into common style

trans. into bob's style

1
3
-
f
6
b
7
4
e
5

1
4
-
7
8
5
4
c
2
b

Figure 2: Proposed setups with FLEXITEX: (left) turn-based, (right) diff-based.

We are currently conducting more experiments with FLEXITEX [25], which is our prototype tool. It
takes a configuration file specifying desired folder structure and conditions for content splitting, and is
supposed to be run either locally as a git hook or remotely as an action. Preliminary results indicate
that it can handle many real projects, but in particular tracking paths to files which are referred to
through bespoke LATEX commands, remains a challenge.

5. Concluding Remarks

In this work we explored how project structuring practices in LATEX can be understood and improved
through the lens of software engineering and evolution using a mixed-methods approach. Both the
qualitative and quantitative analyses revealed a lack of universal standards, but also highlighted
emerging informal conventions that could inform the development of flexible, community-driven
guidelines. Building on these insights, we introduced FLEXITEX, a system that enables users to maintain
their preferred project structures while collaborating on shared content. For more information about
the parts of this project, we advise consulting corresponding Bachelor theses that formed the core of
this research [17, 18, 19].

Declaration on Generative AI

The authors have not employed any Generative AI tools to create, change or rephrase the content of
this document.

5

Wouter ten Brinke et al. CEUR Workshop Proceedings 1–7

References

[1] D. Knuth, L. Lamport, et al., LATEX — A Document Preparation System, https://www.latex-project.
org, 1984.

[2] C. Igel, Academic Writing with LATEX, 2019. doi:10.22541/au.156080179.95968195.
[3] Y. Zheng, Academic Writing by Using LATEX: A Hands-on Workshop, in: Proceedings of the 24th

Annual Conference on Information Technology Education, SIGITE, ACM, New York, NY, USA,
2023, p. 90–91. doi:10.1145/3585059.3611425.

[4] T. Frank, S. Gastine, K. Lindauer, H. Speth, A. Strougo, A. Kovar, LATEX Tutorial for the Stan-
dardization and Automation of Population Analysis Reports, CPT: Pharmacometrics & Systems
Pharmacology 10 (2021) 1310–1322. doi:https://doi.org/10.1002/psp4.12705.

[5] H. C. Gunderman, D. Scherer, K. Behrman, Leveraging Library Technology Resources for Internal
Projects, Outreach, and Engagement: A Case Study of Overleaf, LATEX, and the KiltHub Institutional
Repository Service at Carnegie Mellon University Libraries, College & Undergraduate Libraries 27
(2020) 164–175. doi:10.1080/10691316.2021.1885549.

[6] N. Guizani, H. E. Rodriguez-Simmonds, Developing Personal and Community Graduate Student
Growth through the Implementation of a LATEX Workshop, in: 2016 ASEE Annual Conference &
Exposition, ASEE Conferences, New Orleans, Louisiana, 2016. doi:10.18260/p.26768.

[7] F. E. P. Santos, J. S. Lima, E. M. Rodrigues, I. L. d. Santos, K. Y. S. Feitosa, Desafios e possibilidades
da atividade mediadora do bibliotecário na normalização de trabalhos acadêmicos: o uso do LATEX,
InCID: Revista de Ciência da Informação e Documentação 9 (2018) 25–51. doi:10.11606/issn.
2178-2075.v9i1p25-51.

[8] D. Verna, Towards LATEX Coding Standards, TUGboat 32 (2011) 309–328. URL: https://www.tug.
org/TUGboat/tb32-3/tb102verna.pdf.

[9] J. MacFarlane, A. Krewinkel, J. Rosenthal, Pandoc, GPL-2.0 license, https://github.com/jgm/pandoc,
2006.

[10] B. R. Miller, D. Ginev, LaTeXML, National Institute of Standards and Technology, Public Domain
license, https://math.nist.gov/~BMiller/LaTeXML/, 2004.

[11] K. Smith, PlasTeX, As-is license, https://github.com/plastex/plastex, 2007.
[12] P. Faist, Pylatexenc, MIT license, https://github.com/phfaist/pylatexenc, 2015.
[13] M. Ley, DBLP: Computer Science Bibliography, https://dblp.org, 1993.
[14] R. P. Barazzutti, CSAuthors.Net, https://www.csauthors.net, 2014.
[15] V. Zaytsev, BibSLEIGH, http://bibtex.github.io, 2015.
[16] V. Zaytsev, BibSLEIGH: Bibliography of Software (Language) Engineering in Generated Hypertext,

in: A. H. Bagge, T. Mens, H. Osman (Eds.), Post-proceedings of the Eighth Seminar in Series on
Advanced Techniques and Tools for Software Evolution (SATToSE 2015), volume 1820 of CEUR
Workshop Proceedings, CEUR-WS.org, 2017, pp. 54–64. URL: http://ceur-ws.org/Vol-1820/paper-06.
pdf.

[17] A. Ignatovič, How Academics Organize LATEX Projects — and Whether Structure Should Be
Standardized, Bachelor’s thesis, Universiteit Twente, Enschede, The Netherlands, 2025. URL:
http://purl.utwente.nl/essays/107820.

[18] B. Griepsma, Can We Standardize LATEX? Discovering Patterns in Real-World Repositories, Bache-
lor’s thesis, Universiteit Twente, Enschede, The Netherlands, 2025. URL: http://purl.utwente.nl/
essays/107264.

[19] W. ten Brinke, FLEXITEX: LATEX Collaboration Without Giving Up Personal Project Structure, Bache-
lor’s thesis, Universiteit Twente, Enschede, The Netherlands, 2025. URL: http://purl.utwente.nl/
essays/107262.

[20] B. Griepsma, LaTeX Academic Dataset, CC-0 license, https://github.com/Bart0TW/LaTeX_
academic_dataset, 2025.

[21] K. Matsuda, R. Eramo, M. Johnson, V. Zaytsev (Eds.), Bidirectional Transformations — Foundations
and Applications, National Institute of Informatics, 2025. URL: https://shonan.nii.ac.jp/seminars/
231/.

6

Wouter ten Brinke et al. CEUR Workshop Proceedings 1–7

[22] H. Giese, G. Karsai, V. Zaytsev, WG4: Multiple Interacting Bidirectional Transformations, in:
A. Cleve, E. Kindler, P. Stevens, V. Zaytsev (Eds.), Report from Dagstuhl Seminar 18491 on Mul-
tidirectional Transformations and Synchronisations (MX Dagstuhl), Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2019, pp. 10–11.

[23] Z. Diskin, Y. Xiong, K. Czarnecki, From State- to Delta-Based Bidirectional Model Transformations:
the Asymmetric Case, Journal of Object Technology 10 (2011) 6: 1–25. doi:10.5381/JOT.2011.
10.1.A6.

[24] Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, F. Orejas, From State- to Delta-
Based Bidirectional Model Transformations: The Symmetric Case, in: J. Whittle, T. Clark,
T. Kühne (Eds.), Proceedings of the 14th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS), volume 6981 of LNCS, Springer, 2011, pp. 304–318.
doi:10.1007/978-3-642-24485-8_22.

[25] W. ten Brinke, FLEXITEX, MIT License, https://github.com/wtb04/FlexiTeX, 2025.

7

ClassViz: From Inspection Tool to Research Vessel
Satrio Adi Rukmono1

1Eindhoven University of Technology (TU/e), De Zaale, Eindhoven, The Netherlands

Abstract
This work explores how visualisation bridges precise but complex software representations and the needs of
human comprehension. We present ClassViz, a prototype that began as a lightweight inspection aid for code-to-
graph instantiations and evolved through student projects, industrial collaborations, and research integration
into a versatile platform for exploring software structures. Its trajectory illustrates how even a modest tool can
become a shared environment for experimentation, evaluation, and communication.

Keywords
software architecture visualization, software maintenance, program comprehension

1. Introduction

Visualisation is central to understanding and maintaining software systems, complementing textual
and structural representations. Graph-based models of source code are precise but often too large for
direct inspection. In prior work, we proposed [1] labelled property graph (LPG)-based representations
of software entities, relations, and attributes in a schema-light format [2]. Visualisation provides an
intermediate form for inspecting instantiation outputs and communicating insights.
ClassViz1 was developed to support such inspection, evolving into a platform used in research,

education, and industry. It featured in the industrial evaluation of our deductive software architecture
recovery (DSAR) technique [3, 4], acting as the “exoskeleton” for explanatory artefacts shown to
participants.

2. Related Work

Software visualisation has addressed aspects of structure, behaviour, and evolution. A systematic review
by Chotisarn et al. [5] of 105 articles (2013–2019) found that visualisations primarily target design,
implementation, and maintenance tasks, typically using multivariate, graph-based, or metaphorical en-
codings (e.g., cities). Despite this diversity, industrial uptake remains limited, especially for maintenance
and debugging. This underscores the need for practical and usable tools.

In software architecture visualisation, Shahin et al. [6] surveyed 53 studies (1999–2011). They identi-
fied four main types: graph-based, notation-based, matrix-based, and metaphor-based. Graph-based
approaches dominate recovery and evolution tasks; metaphor-based views offer intuitive overviews,
but raise scalability and cognitive concerns. Most techniques were tested only on small or academic
systems, with little industrial use. The review emphasised the dual role of architecture visualisation:
supporting both structural viewpoints (components, connectors, layers) and decisional viewpoints
(design decisions and rationale).

These reviews frame our visualisation approach. ClassViz supports structural analysis of instantiated
architecture graphs with filtering, layout, and layering. Its adoption in academic and industrial settings
illustrates one response to calls for usable and practice-oriented tools.

BENEVOL’25: The 24th Belgium-Netherlands Software Evolution Workshop, November 17–18, 2025, Enschede, The Netherlands
Envelope-Open s.a.rukmono@tue.nl (S. A. Rukmono)
GLOBE https://satrio.rukmono.id/ (S. A. Rukmono)
Orcid 0000-0001-9480-7216 (S. A. Rukmono)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1Live and loaded with JHotDraw 5.1 example input: https://satrio.rukmono.id/classviz/?p=jhotdraw-5.1

3. Visualisation Approach

ClassViz began as a pragmatic aid for visually inspecting code-to-graph instantiations [1]. It evolves
through cycles of feedback, extension, and integration. Rather than a fixed set of requirements, its
growth was driven by recurring needs arising from ongoing research. These needs form the basis for
three research questions.

RQ1 What visual affordances support effective lightweight inspection of labelled-property code graphs
for correctness and usability assessment?

RQ2 What factors influence the adoption, extension, and appropriation of software structure visualisation
tools in educational and industrial contexts?

RQ3 How can software visualisation tools be designed to serve as effective frontends for diverse
automated analyses such as architectural recovery and summarisation?

3.1. RQ1: Lightweight Visual Inspection of Graphs—Our Motivation and Origin

The initial version of ClassViz focused on inspecting large and complex graph instantiations produced
by our tool Javapers2. These graphs were precise, but overwhelming, too large for immediate feedback.
The initial design therefore emphasised clarity and filtering to produce diagrams that could be inspected
during iterative development.

In ClassViz, nested boxes represented packages and classes, with class-level relations drawn as
coloured UML-style line-with-end symbols (e.g., hollow triangles for inheritance, diamond for composi-
tion). Filtering allowed toggling of primitive types, packages, and relation types, and highlighting of
classes by name. Click-through navigation revealed related elements, supporting localised exploration
without overwhelming the view. Relations could be rendered as orthogonal or Bézier lines, with a choice
of layouts from general-purpose algorithms. Figure 1 shows the initial version of ClassViz applied to
JHotDraw 5.1.

These design choices enabled rapid inspection during the development of our LPG instantiation
tool, allowing correctness and usability checks without heavy tooling. ClassViz offers minimal but
expressive visual affordances—nested boxes, UML-style arrows, filters, and highlighting—that reduce
cognitive load while preserving structural fidelity. Implemented as a lightweight browser application, it
runs easily during short development cycles. These simple encodings, filtering, navigation, and
infrastructure made it an effective inspection aid, enabling quick structural sanity checks
and supporting practical debugging of graph instantiation quality throughout development.

3.2. RQ2: Accessibility and Modifiability in Educational and Industrial Contexts

ClassViz’s lightweight, browser-based architecture and minimal infrastructure assumptions made it
easy to adopt and extend. Key factors that influenced its uptake in educational and industrial contexts
include: (i) low barrier to entry for developers, (ii) openness to diverse input/output semantics in the
same syntax, and (iii) modifiability by design. These qualities enabled it to function not just as a tool
but as a shared platform across multiple independent student projects and industry-facing efforts.

Several student extensions explored dynamic behaviour visualisation. Fung [7] added overlays for
execution traces; Tanis [8] built a summarisation frontend for large-scale traces; He [9] combined
static structure with activity overlays; and Van Esch [10] brought ClassViz concepts to virtual reality,
combining structure and dynamic sequence data in 3D. Together, these works show how runtime-
oriented adaptations were feasible across fidelity levels and modalities.

Other works focused on improving structural clarity and visual encoding. Kloet [11] addressed
the legibility and usefulness of applying distinct layouts across abstraction levels. BubbleTea and
CodeView [12, 13] introduced alternative layout metaphors: layered bubble-packing and abstracted

2https://github.com/rsatrioadi/javapers

(a) Classes involved in an instance of the strategy design pattern in JHotDraw 5.1. Other classes are filtered out.

(b) All packages and classes of JHotDraw 5.1 (that fit the viewport) and the “calls” relations among the classes.

Figure 1: Screenshots from an early ClassViz version, showing JHotDraw 5.1 in different modes.

views, respectively, while Atisomya [14] explored direct mapping of analytical dimensions to visual
variables such as position and colour, showcasing the flexibility of the underlying design space.

ClassViz also served as a frontend for specialised analysis pipelines. Asuni [15] added overlays for
vulnerability detection results. Kakkenberg et al. [16] applied ClassViz principles to low-code platforms,
resulting in Arvisan, an industrially evaluated tool that continues to be useful in different domains [17].

Notably, the simplicity of ClassViz brings operational limitations that encouraged parallel evolution.
Morier3 developed a shared backend to support authentication, graph versioning, and permission-aware
data access, laying the groundwork for a unified ecosystem across ClassViz forks and related tools.

Overall, these projects demonstrate that ClassViz’s adoption and extension were driven not by
feature completeness but by a deliberately minimal and open design that enabled diverse appropriation.

3https://github.com/SimonMorier/ArchManager-back

The low entry barrier and minimal coupling empowered non-core developers to repurpose
ClassViz across adjacent (sub)domains without deep reengineering.

3.3. RQ3: Visual Frontend for Architectural Analysis and Explanation

Feedback from students and collaborators led to iterative adaptations that broadened ClassViz’s func-
tionality and transformed it into a shared research artefact. A central enabler of this evolution is its
use of LPGs, which allow analysis results to be integrated flexibly, either as additional nodes/edges
or as properties on existing ones. These properties can be directly mapped to visual variables, e.g.,
metrics to colour gradients, classifications to discrete colours, and ranked values to spatial layout (e.g.,
vertical position by layer). This makes ClassViz well-suited as a frontend for structurally anchored
explanations.

ClassViz was used as the presentation layer for hierarchical summarisation [18] and DSAR [3] outputs.
To support these use cases, we added node colouring for classifications (i.e., role stereotypes [19],
architectural layers [20]) and a detail pane for automatically generated summaries. These enhancements
grounded abstract analysis results in the system’s structure, improving interpretability and traceability.

Additional enhancements, some drawn from extension projects, were integrated to further support
explanations. These include lifting and lowering relations across abstraction levels, gradient and
thickness styling for edges to encode direction and weight, and more intuitive filtering and navigation.
Figure 2 shows a recent version of ClassViz with role-classification results visualised using colour-coded
nodes.

Figure 2: A recent version of ClassViz showing classes from JHotDraw 5.1 classified into role stereotypes [19]
and call relation lifted into package level.

ClassViz was then deployed in an industrial evaluation at ASML. Our study [4], under review at
ICSE-SEIP, assessed the tool in context: ClassViz acted as the explanatory surface for DSAR-derived
architectural views. What began as a simple tool for visual inspection evolved into a presentation layer
for explanation workflows, supporting interpretation and communication in both research and industry
settings. These integrations show how LPGs bridge abstract analysis results and architectural
explanations by enabling node and edge properties to be directly mapped to visual variables.

3.4. Eating Our Own Dog Food: Visualising ClassViz in ClassViz

Figure 3 shows the internal structure of the ClassViz source code, rendered in ClassViz itself with
a manually arranged layout and minor post-processing for legibility. The diagram combines two
abstraction levels: filesystem folders, shown in UML-style package notation; and JavaScript modules,
shown as labelled rectangles. Modules are coloured by DSAR-inferred role stereotype (e.g., Controller,
Coordinator); folders by architectural layer (i.e., Presentation, Domain, Data). Although ClassViz
normally toggles between these modes, the figure overlays both to avoid duplication.

classviz

src

calls

calls

ca
lls

ca
lls

ca
lls

calls

utilities

uiControls

graphProcessing

script

shorthands colors

visualTransformations

headlessTransformations

utils

edgesPanel nodesPanel

infoPanel graphPanel

migration

Architectural layer

Presentation
Domain
Data

Role stereotype

Controller
Interfacer
Coordinator
Service provider

Figure 3: ClassViz source code organisation as depicted by ClassViz itself.

The graphProcessing folder implements the core pipeline, converting graphs into visual form by
collapsing classes, assigning visual cues, and filtering edges. The uiControls folder handles user
interaction, and utilities provides shared functions such as colour assignment.

This self-visualisation validates the tool on a non-trivial codebase and also offers design feedback:
the dominance of calls to utility functions suggests overcentralisation, while the segmentation of UI
panels highlights interface modularity.

4. Reflection

The trajectory of ClassViz shows how a pragmatic artefact can evolve into a central research instrument.
Its growth was shaped by shifting research needs, with each inquiry prompting adaptations and, in
turn, new questions. Visualisation tools in software engineering are rarely static; ClassViz illustrates
how adaptability enables experimentation, pattern discovery, and explanation.

This adaptability stems from deliberate design minimalism and architectural openness. By avoiding
rigid assumptions, ClassViz remained easy to extend, supporting overlays for dynamic behaviour,
security, stereotypes, and VR with minimal friction. Its forks show that modifiability often outweighs

completeness. More broadly, explanation and inspection are not auxiliary but generative; seeing
structure often precedes explaining it, making explanatory tooling a valid research contribution.

References

[1] S. A. Rukmono, M. R. Chaudron, Enabling Analysis and Reasoning on Software Systems through
Knowledge Graph Representation, in: 20th International Conference on Mining Software Reposi-
tories, IEEE, 2023, pp. 120–124. doi:10.1109/MSR59073.2023.00029.

[2] D. Anikin, O. Borisenko, Y. Nedumov, Labeled Property Graphs: SQL or NoSQL?, in: 2019
Ivannikov Memorial Workshop (IVMEM), IEEE, 2019, pp. 7–13.

[3] S. A. Rukmono, L. Ochoa, M. R. Chaudron, Deductive Software Architecture Recovery via Chain-
of-Thought Prompting, in: 44th International Conference on Software Engineering: New Ideas
and Emerging Results, Association for Computing Machinery, New York, NY, USA, 2024, pp. 92–96.
doi:10.1145/3639476.3639776.

[4] S. A. Rukmono, L. Ochoa, T. M. Bressers, J. Krüger, M. R. Chaudron, Evaluating Explanatory
Artefacts of DSAR-Recovered Architectures from Industrial Codebases, 2025.

[5] N. Chotisarn, L. Merino, X. Zheng, S. Lonapalawong, T. Zhang, M. Xu, W. Chen, A Systematic
Literature Review of Modern Software Visualization, Journal of Visualization 23 (2020) 539–558.

[6] M. Shahin, P. Liang, M. A. Babar, A Systematic Review of Software Architecture Visualization
Techniques, Journal of Systems and Software 94 (2014) 161–185.

[7] K. Y. Fung, Classifying Java Classes Into Role Stereotypes Based on Their Behavior, Master’s thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands, 2023.

[8] H. Tanis, LLM-Enhanced Code Comprehension by Combining Static and Dynamic Analysis in
Large-Scale C++ Systems, Master’s thesis, Eindhoven University of Technology, Eindhoven, The
Netherlands, 2025.

[9] Y. He, Enhancing Program Comprehension through Visualization and LLM-based Summarization
of Behaviour, Master’s thesis, Eindhoven University of Technology, Eindhoven, The Netherlands,
2025.

[10] H. v. Esch, Visualizing Software Behavior & Structure in Virtual Reality, Master’s thesis, Eindhoven
University of Technology, Eindhoven, The Netherlands, 2024.

[11] P. Kloet, Multi-level Layout Algorithms for Visualizing Hierarchical Software Systems, Master’s
thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2024.

[12] S. A. Rukmono, M. R. Chaudron, C. Jeffrey, Layered BubbleTea Software Architecture Vi-
sualisation, in: Working Conference on Software Visualization, IEEE, 2024, pp. 122–126.
doi:10.1109/VISSOFT64034.2024.00024.

[13] C. Jeffrey, A. P. Nugroho, S. A. Rukmono, Y. Widyani, CodeView: A Tool for Software Visualization
in Development View, in: 2024 IEEE International Conference on Data and Software Engineering
(ICoDSE), IEEE, 2024, pp. 67–72.

[14] A. K. Atisomya, Pengembangan Alat Visualisasi Arsitektur Perangkat Lunak untuk Analisis Multi-
dimensi, Bachelor’s thesis, Institut Teknologi Bandung, Sekolah Teknik Elektro dan Informatika,
Bandung, Indonesia, 2025.

[15] M. Asuni, Effective Graphical Visualization of Vulnerabilities in C and C++ Programs, Master’s
thesis, University of Cagliari, Faculty of Engineering and Architecture, Cagliari, Italy, 2024.

[16] R. Kakkenberg, S. A. Rukmono, M. R. Chaudron, W. Gerholt, M. Pinto, C. R. de Oliveira, Arvisan:
an Interactive Tool for Visualisation and Analysis of Low-Code Architecture Landscapes, in: Pro-
ceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages
and Systems, 2024, pp. 848–855.

[17] F. Zamfirov, A. Radulescu, J. Krüger, M. R. Chaudron, Lessons from Visualizing Software
Architecture Structure Conformance at Thermo Fisher Scientific, in: seaa, springer, 2025.
doi:10.1007/978-3-032-04207-1_25.

[18] S. A. Rukmono, L. Ochoa, M. R. Chaudron, Achieving High-Level Software Component Summa-

rization via Hierarchical Chain-of-Thought Prompting and Static Code Analysis, in: International
Conference on Data and Software Engineering, IEEE, 2023, pp. 7–12. doi:10.1109/ICoDSE59534.
2023.10292037.

[19] R. Wirfs-Brock, A. McKean, I. Jacobson, J. Vlissides, Object Design: Roles, Responsibilities, and
Collaborations, Pearson Education, 2002.

[20] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley, 2012.

Pseudonymization as a Service:
Compartmentalizing & Controlling Data Processing in
Evolving Systems with Micropseudonymization
Job Doesburg1,*, Bernard van Gastel1 and Erik Poll1

1NOLAI, Radboud University, Erasmusplein 1, Nijmegen, The Netherlands

Abstract
IT systems can be complex, processing data for different purposes in different subsystems, e.g. in microservice or
service-oriented architectures. With such growing complexity, the chance of compromise of one (sub)system
increases. This comes with privacy risks. In this article, we demonstrate the strength of blind, polymorphic, tran-
sitive and distributed pseudonymization to cryptographically compartmentalize and control data, limit the impact
of data breaches and preserve privacy during system evolution. While pseudonymization is a well-established
technique to hide identities, we propose its application at much finer granularity to control data linkage between
or even within microservices, which we call micropseudonymization. This extends functional compartmental-
ization to data compartmentalization, strengthening privacy. Specifically, we propose Pseudonymization as a
Service (PaaS): an architecture where different microservices process data about data subjects using different
pseudonyms and communicate through a central pseudonymization service that monitors and controls data
exchange. This allows for new subsystems to be added without (accidentally) violating privacy constraints,
enabling privacy-preserving system evolution and implementing privacy by design by applying pseudonymization
by default. While we explicitly propose a solution for microservice architectures, we believe our insight can be
applied generally, for any data processing system with a functionally compartmentalized architecture.

Keywords
Compartmentalization, privacy, pseudonymization, microservices, privacy by design, software evolution

1. Introduction

Modern data processing systems can be complex. System architectures such as microservice or service-
oriented architectures (SOAs), have enabled rapid growth of system functionalities. The rise of artificial
intelligence, for example, drives the processing of data for additional purposes such as training or fine-
tuning of AI models, and with the growing popularity of Software as a Service, an increasing number
of legal parties are involved in data processing. Systems thus process data in an increasing number of
subsystems, for different purposes, potentially by different parties (i.e. in different contexts [1]).

This growing complexity introduces privacy risks: the more subsystems are involved and thus the
more complex the whole system grows, the higher the chance that eventually, one will be compromised,
either intentionally (i.e. actors deliberately violating policies) or unintentionally (e.g. data leakage as
result of hacking or failing security measures [2].). We see the consequences in numerous large-scale
data breaches. To improve privacy without changing what data is processed (i.e. without processing
less data), compartmentalization can be applied. Microservice architectures and SOAs are a form
of functional compartmentalization, limiting the functional impact (i.e. the impact on the system’s
functioning, e.g. system integrity or availability) of compromise. The data they process, however, is
often not actually compartmentalized due to the use of shared identifiers. Data can therefore be linked
with other public data or data in other microservices. This may result in cascading privacy problems:
data may appear in a different context [3] than intended (context collapse), and through combination of
data (aggregation), new information may be revealed from patterns, exceeding the sum of parts [4],
possibly even leading to (re)identification through quasi-identifiers [5].

BENEVOL’25: Belgium-Netherlands Software Evolution Workshop, November 17–18, 2025, Enschede, NL
*Corresponding author.
$ job.doesburg@ru.nl (J. Doesburg); bernard.vangastel@ru.nl (B. van Gastel); erik.poll@ru.nl (E. Poll)
� 0009-0004-4120-6977 (J. Doesburg); 0000-0002-0974-4634 (B. van Gastel); 0000-0003-4635-187X (E. Poll)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:job.doesburg@ru.nl
mailto:bernard.vangastel@ru.nl
mailto:erik.poll@ru.nl
https://orcid.org/0009-0004-4120-6977
https://orcid.org/0000-0002-0974-4634
https://orcid.org/0000-0003-4635-187X
https://creativecommons.org/licenses/by/4.0/deed.en

In this article, we demonstrate the strength of central, blind, polymorphic, transitive and distributed
pseudonymization to compartmentalize data (in addition to functional compartmentalization), minimiz-
ing the privacy impact of (sub)system compromise, and enable privacy-preserving system evolution.
While pseudonymization is a well-established technique to prevent identifiability of data subjects, we
propose its application at much finer granularity to limit and control data linkage between different
data compartments, formed by microservices. We call this micropseudonymization.

As we gradually explain in this article, this idea comes down to the following: where pseudonyms
are normally only used to hide direct identifiers, micropseudonymization goes beyond this purpose
and additionally aims to separate data processing in small isolated compartments, minimize the data
processed in each compartment and control data linkage between them to centrally and cryptographically
enforce specific privacy policies.1 Or simply put: when each microservice uses its ‘own’ pseudonyms,
unauthorized linkage of data across microservices is prevented by default, even when multiple services
are compromised. This achieves significant privacy features, while being generic and flexible, which
makes micropseudonymization a practical technology to implement: it only modifies the identifiers being
used in communication between microservices. This maximally limits data linkability and performs data
minimization without changing the functioning of the system. We consider this technology especially
useful in complex systems with complex trust boundaries, e.g. involving different legal parties or actors
in different roles that each may only see specific subsets of data.

Specifically, we propose Pseudonymization as a Service (PaaS2): an architecture where different mi-
croservices in a system processes data about the same data subjects using different domain-specific
pseudonyms. Using a secure (i.e. blind, polymorphic, transitive and distributed) and central pseudonymi-
zation service, data can be converted and exchanged between these pseudonymization domains, while
applying central monitoring and control on these conversions. The central authorities administering
the pseudonymization service can enforce privacy policies that specify what data may be processed
by which service. This helps to keep grip on data processing in complex and evolving systems and
implements privacy by design by applying pseudonymization by default. We evaluate our ideas through
a case study of a research data platform designed by the authors, that implements PaaS.

While the idea of using different pseudonyms for data in different domains to improve privacy is not
groundbreaking and proposed earlier, for example for distributed governmental databases [7], doing it
so granularly at the system architecture level and as a method to enable privacy-preserving system
evolution in complex systems, has not yet been proposed to our current knowledge.

In order for micropseudonymization to be effective, we assume the data in each service to be strictly
pseudonymous, meaning that they do not contain unique attributes (or combinations of them, called
quasi-identifiers) shared with other services, that would allow for data linkage bypassing the pseudony-
mization service. Data should only be linkable via the identifiers. Applying micropseudonymization
highly granularly, however, can actually be used to eliminate such quasi-identifiers in large parts of
data processing, as we explain in subsection 3.5. We also do not consider timing and traffic analysis
attacks, where data can be linked based on timing of events or other metadata. This typically holds for
batch data processing in situations where the data subjects are not necessarily the ‘users’ of a system.

Terminology Throughout this article, we use the terms system, subsystem, service and microservice
somewhat interchangeably for (software) systems that process data. Strictly speaking, a large data pro-
cessing system can be composed of multiple subsystems, that all may also be considered as independent
systems themselves, depending on the scope. For example, a large data processing system (perhaps
even ‘landscape’) of a typical corporate organization may consist of different (sub)systems for customer
relationship management, enterprise resource planning and billing, that all exchange data among each
other. Some of these may be delivered as a service by a service provider. Others may be self-hosted and
may even consist of more subsystems, such as a front-end, back-end and database service.

Typically, the term microservice is used to highlight the smallest self-contained unit of a system,

1Notice that hide, separate, minimize, control and enforce are all common privacy-design strategies [6].
2Not to confuse with Platform as a Service.

responsible for carrying out a single, well-defined data processing function, such as performing a
specific computation, data transformation or doing ‘data storage’. Systems following a microservice
architecture consist of only such independent microservices, while SOAs typically group related data
processing functions together in somewhat broader services. In this article, however, we do not focus
on these differences and conveniently call each functionally compartmentalized unit of the system
in scope a microservice, regardless of the size or complexity of the function they perform. This, for
example, also includes externally delivered SaaS systems. Typical examples are separation in different
software processes, in different Docker containers, on different physical machines, hosted by different
legal parties or any other form of trust boundaries. Human actors manually processing data in some
way could also be considered. We thus consider a model where a data processing system consists of
a network of independent microservices, all performing a well-defined data processing function and
exchanging data among each other. While we discuss microservices, our insights transfer to general
data processing systems with various types of trust boundaries.

2. Background: identifiers and pseudonyms

We first provide a background on the usage of identifiers in data processing and different forms of
pseudonymization (specifically PEP [8]), which forms the basis of our PaaS architecture.

Data processing systems rely on identifiers to organize and reference entities (or data subjects) within
their data. Fundamentally, these identifiers serve two distinct functional purposes:

1. Internal reference: To distinguish entities within a specific dataset or system and internally
link different data points or attributes relating to the same entity.

2. External reference: To refer to entities across different datasets or systems and externally link
between representations of the same entity in multiple systems.

For internal reference purposes, the specific value of an identifier can be arbitrary, requiring only local
uniqueness within the boundaries of that dataset or system, which we call the domain. For external
reference, a higher degree of uniqueness is required to provide linkability across multiple domains.
Notice that the definition of what is internal and external, depends on the scope at which we consider a
system (see also section 1). For clarity, in the remainder of this article, we refer to data as the combination
of identifiers (or pseudonyms), which have internal or external reference as their core purpose, and
attributes, which are any data related to an identifier.

Identifiability A special case of external reference is (legal) identifiability, or the ability to reference
natural persons, the strongest form of external reference.3 This can be illustrated with a microservice
architecture example. Internal reference applies within the boundaries of a single microservice. External
reference applies between different microservices of the same system. However, not all microservices
need to interface with data subjects (and hence identify them) directly. Microservices that do not
interface with data subjects directly, but do need to communicate with each other, could thus use
specific identifiers for external reference that do not need to be identifiable, i.e. pseudonyms. The
definition of internal and external reference thus depends on the scope of and abstraction level at which
we consider a system.

2.1. Pseudonymization

With pseudonymization, highly linkable, or even identifiable identifiers that allow for external reference
are replaced by domain-specific pseudonyms with only limited linkability. Considering this has been done
properly, i.e. there are no further linkable attributes in the data and pseudonyms are truly unlinkable,

3We follow the legal definition of identifiability. From a technical viewpoint, sometimes, any form of external reference is
called identifiability, which is why these values are called identifiers (or nyms, from which pseudonyms are derived). We only
use identifiability for direct reference to natural persons.

this prevents data in one pseudonymization domain from being linked with other data in other domains.
Pseudonyms can only be linked across domains with knowledge of some secret additional information [9],
i.e. the (reverse) pseudonym mapping. Linkability is thus reduced to secrecy of this information.

Notation A common way to denote a pseudonym for (id)entity 𝑋 ∈ ℐ in domain 𝐴 ∈ 𝒟 is 𝑋@𝐴

and the associated pseudonymization function for domain 𝐴, 𝑃𝐴 : ℐ → 𝐴, can be used to convert
𝑋 into 𝑃𝐴(𝑋) = 𝑋@𝐴. To recover a pseudonym, we can write 𝑃−1

𝐴 (𝑋@𝐴) = 𝑋 .4 However, for
pseudonymization between different domains 𝐴 and 𝐵 as we consider in this article, we more generally
denote 𝑃 : 𝐴 × 𝒟𝐴 × 𝒟𝐵 → 𝐵 so that 𝑃 (𝑋@𝐴, 𝐴,𝐵) = 𝑋@𝐵 . Notably, in these cases for any
entity 𝑥 we have 𝑃−1(𝑥,𝐴,𝐵) = 𝑃 (𝑥,𝐵,𝐴). We thus do not consider a distinct recovery function, but
consider each identifier to be a pseudonym in its own domain. The initial value from which pseudonyms
in other domains are derived will be called the ‘origin’.

To denote that pseudonyms are truly unlinkable, we write 𝑋@𝐴 ⊥ 𝑋@𝐵 . More precisely, one could
write ⊥𝑐 to indicate computational unlinkability, for example based on the (decisional) discrete log
problem (⊥DLP), and ⊥∞ to indicate information-theoretic security. For simplicity, however, we will
not discuss these details and default to just ⊥ in this article.

2.2. Properties of pseudonymization methods

There are various ways of computing pseudonyms, including randomized or counter-based mapping
tables, cryptographic hash functions or Message Authentication Codes (MACs) and symmetric or
asymmetric encryption [10]. They can have a variety of different properties of which we highlight the
most interesting ones for privacy and security below.5

Randomness (pseudonym unlinkability) Generated pseudonyms are completely random and do
not encode any other information, hence they are truly unlinkable. Counter-based pseudonyms, for
example, violate this as they contain the order in which they are generated, which may reveal a relation,
hence 𝑋@𝐴 ̸⊥ 𝑋@𝐵 .

Statelessness A pseudonymization method is stateless if its outcome does not depend on previously
performed operations. This is relevant because stateless functions are typically easy to implement
securely and scale well. While completely randomized mapping-table based pseudonymization can
provide information-theoretic unlinkable pseudonyms (i.e. 𝑋@𝐴 ⊥∞ 𝑋@𝐵), their internal mapping
tables either need to be pre-generated (infeasible for large domains), or generated at run-time, resulting
in a stateful pseudonymization function that does not fit the desired type (i.e. 𝑃 : 𝐴 × 𝒟𝐴 × 𝒟𝐵 ×𝑆 →
𝐵 × 𝑆 instead of 𝑃 : 𝐴 × 𝒟𝐴 × 𝒟𝐵 → 𝐵). Therefore, efficient stateless pseudonymization methods
only offer computationally unlinkable pseudonyms.

Reversibility After pseudonymizing from domain A to domain B, it is possible to pseudonymize
back to domain A (i.e. 𝑃 (𝑃 (𝑋,𝐴,𝐵), 𝐵,𝐴) = 𝑋). Notably, we only consider efficiently reversible
pseudonymization methods that require an inverse operation with the same efficiency as the regular
operation. We thus exclude brute force approaches like rainbow tables, as these are generic attacks that
are not specific to the pseudonymization method itself.

Transitivity Pseudonymizing from domain A to domain B and then from domain B to domain C
without first reversing to domain A, yields the same result as pseudonymizing from domain A to domain
C directly (i.e. 𝑃 (𝑃 (𝑋,𝐴,𝐵), 𝐵, 𝐶) = 𝑃 (𝑋,𝐴,𝐶)). Transitivity implies efficient reversibility.

4𝑃−1 is sometimes denoted as recovery function 𝑅.
5For simplicity, we assume all pseudonymization methods to be deterministic and collision-free, though some non-deterministic
methods with collisions do exist.

Distribution Pseudonymization is distributed when multiple parties need to be involved in the
computation of a pseudonym. The benefit of distribution is that no single party possesses the actual
pseudonym mapping and all parties need to be involved to convert a pseudonym. Consequently, the
pseudonym mapping is less likely to leak while there is replicated monitoring and control. In fact,
each pseudonymization method can be distributed by applying it multiple times in sequence, such as
multi-tier mapping-tables where 𝑃 = 𝑃2 ∘ 𝑃1 (for 2 tiers).

Commutativity When pseudonymization is distributed over multiple parties (i.e. 𝑃 = 𝑃2 ∘ 𝑃1), the
order in which the parties perform their operations does not matter (i.e. 𝑃2 ∘ 𝑃1 = 𝑃1 ∘ 𝑃2). Notice
that, though every form of pseudonymization be distributed, only specific forms achieve commuta-
tivity. Commutativity allows for changing the order of parties, potentially limiting the linkability of
intermediate values by these parties.

Blindness (homomorphism) Pseudonymization takes place blindly, thanks to homomorphic prop-
erties, without observing the identifiers that are being pseudonymized, i.e. pseudonyms are encrypted
before they are sent through a pseudonymization process so the party performing pseudonymization
does not observe the pseudonyms. The pseudonymization function 𝑃 = Dec ∘ 𝑃 ′ ∘ Enc thus consists
of an encryption and decryption function, as well as a homomorphic function 𝑃 ′ on the encrypted
pseudonyms.

Polymorphism (encryption randomness) Encryption is polymorphic (or randomized or proba-
bilistic) if there are multiple unlinkable ciphertext representations of the same plaintext. For blind
pseudonymization, this not only disables the party performing the actual pseudonymization from
observing the pseudonym itself, but also whether it is pseudonymizing an entity it has already seen
previously or not. This is sometimes also called multi-show unlinkability.

2.3. Encryption as pseudonymization method

From a cryptographic perspective, reversible pseudonymization can be considered as a form of deter-
ministic (i.e. non-randomized) encryption of identifiers. The pseudonym mapping essentially forms the
key used for encryption, called the pseudonymization secret. Vice versa, encryption methods can be
used for pseudonymization, where the encryption key forms the additional information.

In contrast to how encryption is normally used, for pseudonymization, the decryption key should
typically not be shared with the recipient, as this would allow them to undo the pseudonymization. Also,
normally, ciphertext linkability is considered as an inherent vulnerability of deterministic encryption
that do not use random values, nonces, salts, seeds or initial values. For pseudonymization, however, we
deliberately use deterministic ciphertexts to form pseudonyms that link but hide the identifiers. Using
different keys for different domains allows for pseudonym unlinkability between the different domains.

Blind pseudonymization can be considered as two-layer encryption, where the inner layer of encryp-
tion converts the origin identifier into a pseudonym (without the pseudonymizing party sharing the
‘decryption key’), and the outer layer is applied to hide the origin identifier from the pseudonymizing
party itself and securely send the pseudonym to the recipient (who does receive the decryption key).
The first layer of encryption should be performed homomorphically and deterministically, resulting in
the same ‘ciphertext’ every time. The second layer of encryption should be polymorphic.

2.4. PEP: Polymorphic Encryption and Pseudonymization

The PEP (Polymorphic Encryption and Pseudonymization) framework [8] is an advanced form of pseu-
donymization [10], that has all the properties of pseudonymization mentioned in subsection 2.2.6 It uses
homomorphic operations on malleable ElGamal ciphertexts to blindly convert encrypted pseudonyms
6Actually, some small extensions of the framework are required to securely implement transitivity and distribution, which are
not discussed in this article.

from one domain into another, while using polymorphic encryption to make communication unlinkable
for intermediate parties. The PEP framework has implementations in the ‘PEP Responsible Data Sharing
Repository’ for medical research data [11], as well as the Dutch national eID system DigiD Hoog [12, 13].

Pseudonymization using PEP enables secure pseudonymization between many different domains,
without introducing a privacy hotspot and without single points of failure. Additionally, PEP can be
used for end-to-end encrypted asynchronous communication. This means that pseudonymization can
happen on encrypted data, without the sender being involved (long after initial encryption), enabling
encryption at rest. We do not discuss this further in this article.

3. Data compartmentalization through pseudonymization

Microservice architectures are a form of functional compartmentalization: services run isolated from
each other in their own containers and are protected from interfering with each other. Therefore, when
one service is compromised, this has only limited impact on the functioning of other services in the
system. Regarding data, however, compromise of one compartment (e.g. data leakage in one service)
does not necessarily have a limited privacy impact on data in other compartments: the impact of a data
breach can extend beyond the loss of secrecy of only that data, through unauthorized data linkage with
other public data or data in other services. As a result, data may appear in a different context than
it was originally disclosed in, but more importantly, through combination (aggregation) with other
data, new information may be highlighted, possibly even re-identifying otherwise anonymous data.
Typically, there are no measures in place to maintain boundaries between compartments and prevent
data linkage across them.

In this section, we first generally describe how data compartments can be formed, through the
use of pseudonyms in different pseudonymization domains. We then discuss the usage of a central
pseudonymization service to convert data between those domains, followed by the properties of
pseudonymization methods required to do this securely. Finally, we describe how to apply this concept
in microservice architectures, followed by more advanced use cases.

3.1. Defining data compartments

In order to implement actual data compartmentalization, data processing must be organized in such a
way that compromise of data in one compartment does not have impact on data in other compartments.
Therefore, linkability of data between different data compartments must be prevented. Specifically,
distinguishing identifiers and attributes, this requires data compartments to be subsets of data with:

1. unlinkable identifiers: any identifiers (or pseudonyms) used for processing must be specific to
that compartment and unlinkable to identifiers in other compartments.

2. unlinkable attributes: any attributes shared between compartments must be anonymous or
unlinkable. Attributes or combinations of attributes that are linkable, may only be processed in a
single compartment.

The challenge thus lies in smartly defining which subsets of attributes are processed together in
individual microservices (see also subsection 3.4). We can then use pseudonymization to create unlink-
able identifiers for the data subject for each of these subsets, to form compartments. Whenever data is
exchanged between compartments, the identifiers are converted from the pseudonymization domain
associated with the one compartment, to the pseudonymization domain of the other compartment.

Having defined the subsets of data that form compartments, we can describe what systems have
access to that data compartment: all systems that are involved in the processing of that data in that
specific pseudonymization domain. If any of these is compromised, we may need to consider the data in
this data compartment to be compromised as well. This concept does not need to be limited to software
systems, but could also include hardware, manual processes or people, similar to what is commonly
called a Trusted Computing Base (TCB). We discuss this further in subsection 3.5.

Notice that regular (not blind) pseudonymization methods would violate our rules for data com-
partmentalization: the data compartment performing pseudonymization, contains linked identifiers in
both pseudonymization domains. For now, we will briefly consider this as an exception and consider
the pseudonymization process to be trusted. In subsection 3.3, however, we present how blind and
polymorphic pseudonymization methods mitigate this.

Horizontal and vertical compartmentalization Notice that we specifically consider vertical
compartmentalization, where different compartments contain different attributes (columns) about the
same data subjects (rows). Strictly speaking, however, horizontal compartmentalization is also a form of
compartmentalization, where different compartments consist of different sets of data subjects, or entries
for data subjects, (rows) but with the same attributes (columns). There are, however, some interesting
use cases for applying pseudonymization for horizontal compartmentalization. An architecture where
one system processes data for one half of the data subjects, and another system processes data for the
other half, for example, would be a form of horizontal compartmentalization. There is typically no
pseudonymization required to enforce compartmentalization here, as there are typically no relations
between different data subjects. A more advanced use case could be to record transaction logs of the
same data subject under different pseudonym domains to break linkability.

3.2. Central pseudonymization as a service

A data processing system can only meaningfully function if data can be exchanged between its sub-
systems. To exchange data between two data compartments, a pseudonymization service is required,
converting pseudonyms between two pseudonymization domains. When there are more than two do-
mains between which pseudonyms need to be converted, there could be two distinct pseudonymization
processes, one pseudonymizing from domain A to B, and another from domain B to C. This is, however,
not a scalable solution as for 𝑛 domains, 𝑛− 1 pseudonymization processes are required of all processes
need to communicate with each other.

An alternative to many different pseudonymization processes would be to centralize pseudonymi-
zation in a single service that performs all pseudonym conversions between all domains. This has a
number of key benefits:

1. pseudonymization key secrecy: it is easier to properly secure a pseudonymization secret that
is stored at a central place, than multiple pseudonymization secrets (or even multiple copies of
the same secret) in multiple places.

2. monitoring: central pseudonymization is easy to monitor. Specifically, for example, brute force
attacks that enumerate all pseudonyms are easier to detect and prevent.

3. access control: it is easy to enforce access control rules in a central place. This provides flexibility
to change policies in a single place.

There is, however, one important reason why a central pseudonymization service is undesirable
using regular pseudonymization methods: central pseudonymization forms a great privacy hotspot. A
regular central pseudonymization process could observe all data being exchanged between different
data compartments and would be a single point of failure for the confidentiality and unlinkability of data.
This would effectively undo any positive privacy effects of data compartmentalization. Considering this
central pseudonymization service as a trusted, as stated before, would be an unreasonable assumption.

3.3. Blind, polymorphic, transitive and distributed pseudonymization

Regular pseudonymization methods are a single point of failure for the confidentiality and unlinkability
of the pseudonyms they convert. There are, however, pseudonymization methods that do not suffer
from these problems. Specifically, pseudonymization methods that are blind, polymorphic, transitive
and distributed do not form a single point of failure or privacy hotspot.

1. blind: First, blind pseudonymization methods do not suffer from the privacy hotspot problem,
because data is encrypted before it is sent through the pseudonymization service. The pseu-
donymization service itself does not have access to any data and is thus not part of any data
compartment itself. There is thus no privacy hotspot.

2. polymorphic: In particular, polymorphic blind pseudonymization is required to prevent the
pseudonymization service from linking the same pseudonym over different conversions.

3. transitive: Pseudonymization should be transitive when there are many compartments and many
data flows between them. Without transitivity, pseudonymization from domain A to C (or C to
A) must always go through domain B, causing linkability there.

4. distributed: Finally, it is desirable to perform pseudonymization in a distributed way, i.e. by
multiple parties to eliminate single points of failure. Even if pseudonymization is performed
blindly, it is still based on a pseudonymization secret which can leak. If in a 𝑛-tier distributed pseu-
donymization process one party leaks their pseudonymization secret, this does not directly break
pseudonym unlinkability. Only if all 𝑛 parties would be compromised, pseudonym unlinkability
breaks. Additionally, commutativity may be a desirable property for practical implementations,
but it does not prevent any particular privacy or security threats. In the remainder of this article,
for simplicity, we will discuss a single pseudonymization service, which internally could consist
of multiple distributed subsystems that together form a single pseudonymization service.

As mentioned in subsection 2.4, the PEP pseudonymization has all these properties.

3.4. Micropseudonymization

The idea of micropseudonymization is to organize data processing in the smallest possible data com-
partments. Ideally, each data compartment precisely belongs to a single microservice, performing a
single well-defined data processing function, and consists of precisely the data required for executing
that function. Since each microservice performs a single function, they often process different sets of
attributes as input or compute different attributes as output.7 Therefore, each microservice could be
considered to process its own subset of data and can form its own data compartment.

If this is the case, each compartment has proper data minimalization and the boundaries of our data
compartments are perfectly aligned with the trust boundaries of the (functionally compartmentalized)
microservices. This maximally limits the impact of compromise of each microservice.

Whenever data needs to be exchanged between microservices, this must go through the pseudo-
nymization service. Transitivity guarantees that data from different microservices can be properly
combined, but only if the pseudonymization service allows it according to its configured policies. This
is especially useful if microservices request data just in time (only at the time they need it), as this
enables the pseudonymization service to log whenever data was used by a specific microservice.

Toy example We consider a (highly simplified) toy example of an e-commerce system. This sys-
tem consists of microservices for user authentication, order fulfillment, payments and shipping. Each
microservice forms their own data compartment:

• The user authentication data consists of usernames and passwords, stored under a user ID in the
user-authentication-domain 𝑈 𝑢𝑖𝑑@𝑈 .

• The order fulfillment data consists of ordered products and parcel numbers, stored under a user
ID in the order-domain 𝑂 𝑢𝑖𝑑@𝑂 .

• The payment data consists of bank transactions and payment confirmations, stored under a user
ID in the payment-domain 𝑃 𝑢𝑖𝑑@𝑃 .

• The shipping data consists of payment confirmations and parcel numbers8, stored under a user
ID in the shipping-domain 𝑆 𝑢𝑖𝑑@𝑆 .

7An exception to this could be databases, which we discuss in subsection 3.5.
8As explained later, this may actually be a violation of data compartmentalization if the parcel number is unique.

Figure 1: A toy example of an e-commerce system implementing PaaS, where data cannot be linked between
the different microservices (in red) as 𝑢𝑖𝑑@𝑈 ⊥ 𝑢𝑖𝑑@𝑂 ⊥ 𝑢𝑖𝑑@𝑃 ⊥ 𝑢𝑖𝑑@𝑆 .

A typical flow in this system may look as follows (see also Figure 1).

1. To authenticate, user 𝑋 provides their username and password to the user authentication service.
2. Upon placing an order, their associated user ID 𝑋@𝑈 is converted through the pseudonymization

service and sent to the order service, who receives 𝑋@𝑂 to use in the fulfillment of the order.
3. Meanwhile, 𝑋@𝑈 is also sent to the payment service that uses 𝑋@𝑃 to process the user’s payment.
4. After payment, the payment service sends a payment confirmation to the shipping service,

converting 𝑋@𝑃 into 𝑋@𝑆 .
5. The order service may send the parcel number to the shipping service, converting 𝑋@𝑂 into 𝑋@𝑆 .

The shipping service now has both the payment confirmation (from the payment service) and
parcel number (from the order service) and knows it can ship the parcel.

Notice that except for the authorized data flows (see the access rules in Figure 1) that go through
the pseudonymization service, data cannot be linked. The payment service does not know what was
ordered, the order fulfillment service does not know anything about payments and no service except
the user authentication service knows the user’s identity. When the data in any of these microservices
leaks, they remain unlinkable to other data in other microservices. An exception is the shipping service
and the order service that share a parcel number and could combine their data, assuming that the shared
parcel number is unique (which would indeed violate the unlinkable attributes assumption of section 3).

We could extend this scenario with a customer support service. This service could be allowed to
request data from all different microservices, converting all those pseudonyms into a customer support
pseudonym 𝑢𝑖𝑑@𝐶 . In order to allow this, however, the pseudonymization service could implement a
policy where a customer support agent first needs to justify their request through a customer support
ticket before pseudonymization is allowed to happen. This architecture can thus also be used to enforce
more complex privacy policies, instead of just static ones.

3.5. Advanced use cases

So far, we considered data compartments to belong to a single microservice to minimize the amount
of data processed in that compartment and limit the attack surface. The reverse, however, does not
need to be true. There are actually good reasons for a single microservice to operate in multiple
pseudonymization domains and multiple compartments (see also vertical compartmentalization in
subsection 3.1).

For example, a survey system may process different surveys for the same set of respondents. When
using a single pseudonymization domain, their responses to different surveys would be linkable within
that survey system. By associating each survey with its own pseudonymization domain and applying

pseudonymization between them, linkability of surveys can be prevented. The system will thus process
responses to survey 1 under 𝑋@𝑠𝑢𝑟𝑣𝑒𝑦1 and to survey 2 under 𝑋@𝑠𝑢𝑟𝑣𝑒𝑦2. For true unlinkability in case
of compromise, it is important that the survey system itself is not allowed to convert pseudonyms
between the different pseudonymization domains.

A similar construction could even be used in our e-commerce system to make different orders
of the same customer unlinkable to each other within the order fulfillment service, with different
pseudonymization domains per month, week or day (or even order number). By applying this thoroughly
and at a fine-grained level, every individual attribute could be stored under a different pseudonym.
Only when two attributes really need to be combined for a specific computation, their pseudonyms can
be converted just in time by the pseudonymization service for the short duration of that computation.
This way, even quasi-identifiers can be eliminated during significant parts of data processing.

Database example A concrete example of this concept could a stateful microservice that covers
multiple trust and business logic boundaries, such as a central database service. Many microservice
architectures depend on a single central database that stores the data that all other microservices process.
When all this data is stored as a single data compartment, this would obviously be a great privacy
hotspot. Applying micropseudonymization within this database service, however, could change this.

We could store the data for each microservice in different tables with different pseudonymization
domains under different pseudonyms. The database itself does not need to be able to convert between
the different pseudonymization domains, it just needs to store the data and perform simple queries. In
this case, the database would have access to all data compartments and store their data, but is not able
to link data between these compartments (only the services that depend on it). Notice that in this case,
microservices are not able to exchange data with each other via this database or perform queries across
compartments. A different middleware layer that integrates the pseudonymization service is required
to facilitate this properly.

Micropseudonymization can thus be applied to separate data processing both between (inter) different
microservices, and within (intra) a single microservice. By choosing pseudonymization domains smartly,
micropseudonymization can be used to perform data minimalization, even within a single microservice.

4. Case study: research data platform

As presented in section 1, maintaining privacy in complex and evolving systems can be challenging. In
this section, we present a specific use case where these challenges are especially relevant, and where
micropseudonymization can be used.

Authors are involved in the development of a research data platform for the Dutch National Education
Lab AI (NOLAI) at Radboud University that implements the PaaS architecture. Within NOLAI, many
design-based research projects (10 new 3-year projects each year) are being conducted in cocreation
between schools, researchers and businesses. Within these projects, prototype applications involving
AI are being designed, developed, tested and scientifically validated within schools. These projects
involve various forms of data processing in various different contexts.

For example, operational data for the primary functioning of the prototype is typically processed
by businesses and schools. Meanwhile, parts of the data may be processed for training of AI models
or general product development, by researchers and businesses. Finally, scientific validation data is
collected to validate the educational effectiveness of the prototype. This may involve selected parts
of the operational data, but may also involve additional data, such as survey data or background
information about a student’s learning deficiencies. Even more so, there may actually be several
different research studies being conducted by different independent researchers, analyzing different
subsets of the operational, training and scientific validation data.

In order to maintain privacy, it is crucial that these different forms of data are securely processed
and properly governed. Survey data containing sensitive background information about a student’s
nationality, collected for scientific validation, for example, must be prevented from ending up in trained

AI models. Meanwhile, some data may not be shared with the researchers, while other data may only
be shared with the researchers and not with the school. There is thus a complex system of authorized
data flows between (sub)systems, hosted by different parties involved in these projects. Data is not
processed in just a single research context, but in multiple different operational, product development
and research contexts. Regular pseudonymization (replacing a direct identifier like a name for a single
pseudonym that stays the same throughout all systems), as usual in scientific research, therefore does
not suffice, as it does not prevent linkage of the different types of data between different systems.

System architecture The research data platform consists of several autonomous (sub)systems that
can exchange data between each other. Examples include services for participant registration, surveys,
file uploads, dashboards, long-term data storage, and various data analysis systems or integrations
with prototype applications. They all have different business logic and trust boundaries between them,
and are all involved in different research projects. With new projects starting every few months, the
platform is always evolving and new systems are integrated frequently.

For each project, different pseudonymization domains are defined and associated with these ‘users’
(both functional systems, or individual researchers) that may get access to subsets of data from other
‘users’. In principle, each service processes data with pseudonyms in its own domain. This does not need
to effect the internal functioning of these services. For example, authors have integrated an existing
LimeSurvey service as a data source via a API wrapper that only converts encrypted pseudonyms.

Only whenever data is exchanged between services, this goes through the central pseudonymization
service (further just called PaaS). For example, when a research coordinator decides to start a survey,
data from the participant registration service is sent to the survey system via PaaS and when a survey
response is received for a specific participant, a notification is sent to the research progress dashboard,
also via PaaS. And when a researcher then wants to analyze the survey responses together with log
data uploaded to the file upload service, this also goes through PaaS. Each of these data flows must be
explicitly authorized by PaaS, which only requires a simple configuration file to allow or disallow specific
data flows. This centralizes data governance even though the systems themselves are decentralized.

Characteristics The PaaS architecture allows for rapid development, where different (micro)services
can easily be developed and integrated while preserving privacy. We identify a few characteristics of
this use case. We believe our insights hold generally for any systems where the architectural complexity
and evolution of data processing may cause privacy challenges.

1. High chance of compromise: Because of the nature of cocreation, the variety and large number
of projects, there is a wide variety of parties, systems and actors involved in the data processing.
For each project, new data processing systems need to be set up (due to the nature of the projects)
and the development speed of systems is high. Therefore, there is a high chance that at some point
in time, one of these parties, systems or actors will be compromised (again, either intentionally or
unintentionally) and their data is leaked. Since the chance is high, one can only maximally limit the
impact of compromise to minimize privacy risk (risk = chance× impact). Micropseudonymization
does exactly this: it maximally limits the impact of data breaches without actually changing the
attributes being processed in a specific microservice.

2. Generic and practical solution: Micropseudonymization is a generic privacy enhancing tech-
nology that can be implemented regardless of what form data processing actually takes within
the individual microservices. It can be applied whenever a system has some form of functional
compartmentalization and data exchange between compartments is properly implemented. This
is important for this use case, because of the variety, scale and rapid development speed of systems.
It is not feasible to spend significant time on implementing complex privacy-preserving compu-
tations that are specific to a single project. Micropseudonymization is a generic and practical
measure, that is able to interface with both newly developed and existing systems.

3. Centralized data governance: Data governance suffers from a complex data processing archi-
tecture. When data is processed in numerous systems, with decentralized access control in each

of them, it becomes difficult to keep track of who may have had access to what data. Managing
access rules and monitoring who accessed which data is challenging and error-prone when it is
not centrally organized. By applying PaaS, access control on data linkability can be centralized
despite the system architecture being highly decentralized.

A similar approach of pseudonymization using the PEP framework has been implemented in a
long-term large-scale Parkinson’s Disease Study [14], to disclose pseudonymous subsets of medical
data to different research groups worldwide. Here, the system architecture itself is fixed and does not
evolve, but the users and the datasets they request do evolve. In our research data platform, not only
the users, but also the system architecture itself evolves. In both cases, central pseudonymization can
be used to keep grip of data processing during evolution.

5. Future work

Data subject authentication So far, we discussed systems in which different microservices exchange
data about data subjects with each other using pseudonyms, but we did not consider users communicat-
ing with microservice themselves (using pseudonyms). Whenever this needs to happen (e.g. our toy
example in subsection 3.4), the user-interfacing service needs to authenticate the user. Extensions are
required to enable the pseudonymization service to do this, similar to the goal of anonymous credential
systems or typical pseudonym systems [15, 16, 17].

Pseudonymization service integrity While the PEP framework does realize privacy-friendly
conversion of pseudonyms, it does not yet guarantee integrity or authenticity. Ongoing research by the
authors, however, shows promising results using zero-knowledge proofs to enforce integrity throughout
the pseudonymization process, where different distributed transcryptors can blindly verify each other
that pseudonymization is performed correctly.

Distributed tracing Modern microservice architectures implement extensive monitoring tools to
deal with the architectural complexity. An example is distributed tracing, where events or request
are traced through different microservices, to see what goes wrong. These traces, though useful for
debugging purposes, can be a big problem for privacy, as they enable data linkage and could even
include user IDs directly. Pseudonymization of trace IDs, making them also domain-specific, may be
an interesting approach for privacy-friendly distributed tracing, where trace IDs can only be linked
through a pseudonymization service.

6. Conclusion

Privacy and security are cross-cutting concepts: they can not easily be added to a system but need
to be implemented throughout the whole design. At its core, micropseudonymization solves the
fundamental challenge that privacy becomes harder to maintain as system architectures become more
complex. Traditional approaches to incorporate privacy may fail when system boundaries change.
Micropseudonymization aligns privacy boundaries with security trust boundaries and business logic
boundaries that microservice architectures already implement, implementing privacy by design by
applying pseudonymization by default.

Within these compartments, micropseudonymization remains flexible and generic: the internals of a
microservice are not adapted when micropseudonymization is implemented, except for some middleware
to exchange data with other services. This makes micropseudonymization itself a generic and reusable
component. It can be implemented in any well-designed data processing system that implements some
form of functional compartmentalization, to limit the impact of data breaches. Moreover, by centralizing
data governance, PaaS can be used to control and regulate data exchange to improve system monitoring,
and to enforce important privacy features in complex and evolving data processing systems.

Acknowledgments

This research is performed in context of the Dutch National Education Lab AI (NOLAI), funded by the
Dutch National Growth Fund.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] J. Doesburg, P. van Gastel, B. van Gastel, E. Poll, Data processing diagrams - A modeling technique
for privacy in complex data processing systems, in: F. Bieker, S. D. Conca, J. M. del Álamo, Y. S.
Martín (Eds.), Privacy and Identity Management. Generating Futures - 19th IFIP WG 9.6/11.7 and
IFIP WG 11.6 International Summer School, Privacy and Identity 2024, Madrid, Spain, September 10-
13, 2024, Revised Selected Papers, volume 705 of IFIP Advances in Information and Communication
Technology, Springer, 2024, pp. 115–131. URL: https://doi.org/10.1007/978-3-031-91054-8_6. doi:10.
1007/978-3-031-91054-8_6.

[2] C. Meijer, B. van Gastel, Self-encrypting deception: Weaknesses in the encryption of solid state
drives, in: 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May
19-23, 2019, IEEE, 2019, pp. 72–87. URL: https://doi.org/10.1109/SP.2019.00088. doi:10.1109/SP.
2019.00088.

[3] H. Nissenbaum, Privacy in Context Technology, Policy, and the Integrity of Social Life, Stanford
University Press, 2009.

[4] D. J. Solove, A taxonomy of privacy, University of Pennsylvania Law Review 154 (2006) 477–564.
doi:10.2307/40041279.

[5] L. Sweeney, Simple demographics often identify people uniquely, Carnegie Mellon University,
Data Privacy (2000). URL: https://dataprivacylab.org/projects/identifiability/paper1.pdf.

[6] J.-H. Hoepman, Privacy design strategies, in: ICT Systems Security and Privacy Protection,
IFIP Advances in Information and Communication Technology, Springer, 2014, pp. 446–459.
doi:10.1007/978-3-642-55415-5_38.

[7] J. Camenisch, A. Lehmann, (Un)linkable pseudonyms for governmental databases, in: Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security, ACM, 2015,
pp. 1467–1479. doi:10.1145/2810103.2813658.

[8] E. Verheul, B. Jacobs, Polymorphic encryption and pseudonymisation in identity management
and medical research, Nieuw Archief voor Wiskunde 18 (2017) 168–172.

[9] European Data Protection Board, Guidelines 01/2025 on Pseudonymisation, 2025.
URL: https://www.edpb.europa.eu/our-work-tools/documents/public-consultations/2025/
guidelines-012025-pseudonymisation_en.

[10] European Network and Information Security Agency, Pseudonymisation techniques and best
practices: recommendations on shaping technology according to data protection and privacy
provisions, 2019. URL: https://data.europa.eu/doi/10.2824/247711.

[11] B. E. Van Gastel, B. Jacobs, J. Popma, Data protection using polymorphic pseudonymisation
in a large-scale parkinson’s disease study, Journal of Parkinson’s Disease 11 (2021) S19–S25.
doi:10.3233/JPD-202431.

[12] Logius - Ministerie van Binnenlandse Zaken en Koninkrijksrelaties, Privacy Impact Assess-
ment DigiD Hoog, 2017. URL: https://www.eerstekamer.nl/overig/20190129/privacy_impact_
assessments_pia.

[13] Logius - Ministerie van Binnenlandse Zaken en Koninkrijksrelaties, BSNk PP technische specifi-
caties v11.1, 2024. URL: https://gitlab.com/logius/bsnk/bsnk-techspecs/bsnk/-/raw/main/BPTSlive.
pdf.

https://doi.org/10.1007/978-3-031-91054-8_6
http://dx.doi.org/10.1007/978-3-031-91054-8_6
http://dx.doi.org/10.1007/978-3-031-91054-8_6
https://doi.org/10.1109/SP.2019.00088
http://dx.doi.org/10.1109/SP.2019.00088
http://dx.doi.org/10.1109/SP.2019.00088
http://dx.doi.org/10.2307/40041279
https://dataprivacylab.org/projects/identifiability/paper1.pdf
http://dx.doi.org/10.1007/978-3-642-55415-5_38
http://dx.doi.org/10.1145/2810103.2813658
https://www.edpb.europa.eu/our-work-tools/documents/public-consultations/2025/guidelines-012025-pseudonymisation_en
https://www.edpb.europa.eu/our-work-tools/documents/public-consultations/2025/guidelines-012025-pseudonymisation_en
https://data.europa.eu/doi/10.2824/247711
http://dx.doi.org/10.3233/JPD-202431
https://www.eerstekamer.nl/overig/20190129/privacy_impact_assessments_pia
https://www.eerstekamer.nl/overig/20190129/privacy_impact_assessments_pia
https://gitlab.com/logius/bsnk/bsnk-techspecs/bsnk/-/raw/main/BPTSlive.pdf
https://gitlab.com/logius/bsnk/bsnk-techspecs/bsnk/-/raw/main/BPTSlive.pdf

[14] B. E. van Gastel, B. Jacobs, J. Popma, Data protection using polymorphic pseudonymisation
in a large-scale parkinson’s disease study, Journal of Parkinson’s Disease 11 (2021) S19–S25.
doi:10.3233/JPD-202431.

[15] D. Chaum, Security without identification: Transaction systems to make big brother obsolete,
Communications of the ACM 28 (1985) 1030–1044. doi:10.1145/4372.4373.

[16] A. Lysyanskaya, R. L. Rivest, A. Sahai, S. Wolf, Pseudonym systems, in: Selected Areas in
Cryptography, volume 1758 of Lecture Notes in Computer Science, Springer, 2000, pp. 184–199.
doi:10.1007/3-540-46513-8_14.

[17] J. Camenisch, A. Lysyanskaya, An efficient system for non-transferable anonymous creden-
tials with optional anonymity revocation, in: Advances in Cryptology — EUROCRYPT 2001,
volume 2045 of Lecture Notes in Computer Science, Springer, 2001, pp. 93–118. doi:10.1007/
3-540-44987-6_7.

http://dx.doi.org/10.3233/JPD-202431
http://dx.doi.org/10.1145/4372.4373
http://dx.doi.org/10.1007/3-540-46513-8_14
http://dx.doi.org/10.1007/3-540-44987-6_7
http://dx.doi.org/10.1007/3-540-44987-6_7

On the evolution of direct dependencies in npm packages
Shahin Ebrahimi-Kia1, Jesus M. Gonzalez-Barahona1, David Moreno-Lumbreras1,
Gregorio Robles1 and Tom Mens2

1Universidad Rey Juan Carlos, Madrid, Spain
2University of Mons, Belgium

Abstract
Lehman’s laws of software evolution postulate that software systems tend to grow in complexity and
functional content. We aim to check if this growth can be observed when software applications are built
as collections of reusable components, thus acknowledging that reused components contribute to growth
and functional content. In particular, we study the evolution of the direct dependencies of JavaScript
packages distributed through npm. We analyze this evolution with three different metrics capturing
different growth patterns. Overall, we observe only small increases, suggesting that maintainers control
the growth of the direct dependencies they rely on. We also find cases of increase/decrease patterns,
which could signal specific efforts by package maintainers to reduce the number of dependencies.

Keywords
dependency analysis, software ecosystem, npm, Lehman’s laws, software evolution, software complexity

1. Introduction
Package ecosystems of free, open source software (FOSS) components have revolutionized
modern software development. Many software applications are no longer monolithic entities, but
collections of software packages. Typically, the main application declares direct dependencies
to packages to perform part of its functionality. In doing so, such applications have a new
possible strategy for adapting to increasing complexity: instead of just incrementing their own
code, they can rely on more packages [1]. In this work, we focus on the npm ecosystem of
JavaScript/TypeScript packages because of its central role in web application development, and
because it is the largest and fastest growing package ecosystem. For our analysis, we leverage on
the fact that its public registry enables reproducible historical analysis.

Npm exhibits exponential growth [2], driven by the increasing reuse of packages to fulfill all
kinds of functionality. This rapid growth resonates with Lehman’s laws of software evolution,
particularly those of continuing growth, continuing change, and increasing complexity [3]. These
laws postulate that as software systems evolve, their complexity and interconnectedness naturally
increases, demanding deliberate and continuous efforts to ensure stability and sustainability [4]. It
remains an open question whether Lehman’s insights also apply ecosystems like npm. Widespread
availability of reusable packages makes the addition of direct dependencies a common maintenance
action, which could make growth more likely, following law of continuing growth, which postulates
that developers should constantly add new functionality to meet evolving requirements. But at
the same time, the law of increasing complexity warns that uncontrolled dependency growth can
lead to fragile applications, prone to cascading failures and difficult maintenance [3]. Ecosystems
that fail to address these challenges risk accumulating technical debt, creating barriers to efficient
software evolution [2].

In this paper, we study to what extent npm packages cope with complexity by adding new
dependencies. We focus on direct dependencies because developers can control them directly: if

BENEVOL’25: Proceedings of the 24th𝐵𝑒𝑙𝑔𝑖𝑢𝑚 − 𝑁𝑒𝑡ℎ𝑒𝑟𝑙𝑎𝑛𝑑𝑠𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑊 𝑜𝑟𝑘𝑠ℎ𝑜𝑝, 17 −
−18𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟2025, 𝐸𝑛𝑠𝑐ℎ𝑒𝑑𝑒, 𝑇 ℎ𝑒𝑁𝑒𝑡ℎ𝑒𝑟𝑙𝑎𝑛𝑑𝑠

$ shahin.ebrahimi@urjc.es (S. Ebrahimi-Kia); jesus.gonzalez.barahona@urjc.es (J. M. Gonzalez-Barahona);
david.morenolu@urjc.es (D. Moreno-Lumbreras); gregorio.robles@urjc.es (G. Robles); tom.mens@umons.ac.be
(T. Mens)

© 2025 This work is licensed under a “CC BY 4.0” license.

mailto:shahin.ebrahimi@urjc.es
mailto:jesus.gonzalez.barahona@urjc.es
mailto:david.morenolu@urjc.es
mailto:gregorio.robles@urjc.es
mailto:tom.mens@umons.ac.be
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

they want to “delegate” functionality to a third-party component, they just add it as a new direct
dependency. While we acknowledge that indirect dependencies drive much of the ecosystem
risk (such as security vulnerabilities and breaking changes), they are not under direct control of
developers. We therefore state as our main research question 𝑅𝑄1: Do npm packages increase
their number of direct dependencies over time?

To answer 𝑅𝑄1 we analyze 1,998 npm packages drawn from four public importance-oriented
lists, for reasons explained in Section 3. For the selected packages, we study their number of
direct dependencies over time. Since we are interested in characterizing evolution, we also need
to define metrics to decide if packages are increasing or decreasing in direct dependencies, leading
to the auxiliary research question 𝑅𝑄0: How can we characterise changes in the number of
direct dependencies of packages as they evolve over time?

2. Related Work
The complex dynamics of dependency networks, especially in the npm ecosystem, has been
extensively studied. Decan et al. [2] highlighted that npm’s granular packaging and reuse
introduce fragility and increased vulnerability risks through deeper dependency chains. Zerouali
et al. [5] identified technical lag, where many packages fall behind due to delayed updates.
Moreno-Lumbreras et al. [6] employed visualization, including VR, to explore npm’s networks
and management shortcomings. Prana et al. [7] revealed that tools like Dependabot alert
outdated dependencies but often miss systemic risks like cascading failures. Zahan et al. [8] and
Cogo et al. [9] studied supply chain weaknesses and dependency downgrades, respectively. Decan
et al. [2] also discussed semantic versioning usage, noting inconsistencies leading to conflicts,
while flexible dependency declarations aid update adoption but affect stability.

Research on npm package selection for reuse includes Mujahid et al. [10], who identified
documentation quality, GitHub stars, and security as key factors; Abdalkareem et al. [11] and
Qiu et al. [12] examined trivial package use and popularity metrics. Chatzidimitriou et al. [13]
used network analysis to identify clusters, while Haefliger et al. [14] studied reuse patterns.

Security concerns are paramount, with Vu et al. [15] studying dependency management risks.
Wheeler [16] proposed diverse double compiling to detect compiler injections. Kabir et al. [17]
found widespread neglect of good practices, with vulnerable dependencies being common. Scalco
et al. [18] proposed LastJSMile to detect source and artifact discrepancies. Zerouali et al. [19]
analyzed outdated packages and risks, underscoring the need for software integrity in evolving
dependency networks.

Dependency evolution impacts software integrity and verifiability. Harrand et al. [20] em-
phasized monoculture dangers, showing widely used libraries create security bottlenecks and
amplify vulnerabilities, advocating diversity for resilience. Goswami et al. [21] found 38% of
npm package versions unreproducible due to flexible versioning and tool variation.

Insights from other ecosystems provide context. Raemaekers et al. [22] showed Maven updates
often break compatibility; Bavota et al. [23] mapped interdependencies affecting Apache projects.
Germán et al. [24] revealed distinct evolution patterns in the R ecosystem, with core packages
stable and peripherals more churned.

To date, systematic validation of Lehman’s laws [25] in npm is lacking. Our work empirically
examines if npm’s dependency growth fits Lehman’s laws, especially continuing growth and
increasing complexity. Wittern et al. [26] documented npm’s growth and intensifying dependency
interconnectivity from 2011 to 2015, aligning with Lehman’s increasing complexity. Lehman’s
early work used releases and modules as proxies for time and size. Later studies [3, 27, 28]
continued this, with some simulating calendar time [29, 30]. Studies by Godfrey and Tu [31, 32]
and Robles et al. [33] focused on size and calendar time. Israeli and Feitelson [34] expanded
metrics for Linux evolution, adding complexity and maintainability indices [35]. We extend
software growth metrics by focusing on direct dependencies.

3. Data Preparation
To perform our analysis, we create a historical dataset of package releases with their relevant
dependency growth metrics, following the steps presented in the following subsections. see details
about the reproduction package at the end of this paper.

3.1. List of considered packages
Instead of considering any random package in the npm registry, we create a purposive sample by
focusing on packages which are “relevant to production deployments”. To this end, we use the
lists in npm Rank1. Since these lists date from 2019, they exclude newer packages, or packages
that were not relevant at that time, which is discussed in Section 7). However, this cut-off time
also ensures that most packages will have several years of history.

npm Rank provides four lists of 1,000 packages each:

1. Top 1,000 most depended-upon packages: Packages with the highest number of other
packages directly depending on them.

2. Top 1,000 packages with the largest number of dependencies: Packages with extensive
dependency trees, relying on numerous other packages for functionality.

3. Top 1,000 packages with the highest PageRank score: A ranking that considers both
direct and indirect dependencies, based on a network analysis metric similar to Google’s
PageRank. Packages with high PageRank scores often play a central role in dependency
networks.

4. Top 1,000 packages with the highest authority: Based on the Hyperlink-Induced Topic
Search (HITS) algorithm, which distinguishes between “hubs” and “authorities” in a
network. Studying these authoritative packages helps identify core libraries that are central
to the stability and resilience of npm’s ecosystem [36, 37].

We combined all lists in one, removing all duplicates, resulting in a set of 2,480 unique npm
packages. To retrieve the relevant metadata for each of these packages, we used Open Source
Insights API2. This metadata includes a list of the identifiers for all its releases in npm, and
the number of direct dependencies for each of those releases. For 30 packages we were not able
to obtain the metadata (e.g., because the package is no longer available), resulting in a final
dataset of 2,450 packages.

3.2. Data filtering
Given this list of packages, we want to have into account releases that are “the most suitable for
use in production at any given time”. We decided to only consider releases with a three-component
semantic versioning (SemVer) identifier3, since those are usually recommended for production.
We thus excluded non SemVer-compliant release identifiers with custom versioning schemas or
non-numeric suffixes, such as pre-release and post-release identifiers suffixes (alpha, rc, pre,
post and so on). At any point in time, we consider only the highest published release (following
SemVer order), to consider only the "front-wave" versions, excluding backported releases.

Figure 1 illustrates this filtering of release identifiers for two packages, Express and Webpack.
We show three types of releases: SemVer in blue, non-SemVer in orange, and backports to lower
branches in purple. Our filtering retains only SemVer releases on the highest major branch.

After this filtering, we also exclueded packages with less than six releases (452 packages), since
those are too few to observe evolution. This resulted in a dataset of 1,998 packages and their
SemVer-compliant release metadata and direct dependencies.
1https://gist.github.com/anvaka/8e8fa57c7ee1350e3491 Details and code: https://github.com/anvaka/npmrank
2https://docs.deps.dev/api/v3/
3https://semver.org/

https://gist.github.com/anvaka/8e8fa57c7ee1350e3491
https://github.com/anvaka/npmrank
https://docs.deps.dev/api/v3/
https://semver.org/

Express

Webpack

Figure 1: Identified release identifiers for Express (top) and Webpack (bottom). Each datapoint represents
a release, with SemVer-compliant releases shown as blue circles, non-SemVer releases as orange triangles, and
backporting releases as purple diamonds. This visualization clearly reveals the need to remove non-SemVer
and backporting releases from the analysis.

(a) Max direct dependencies. (b) Package lifetime (years).

Figure 2: Distributions for the considered package dataset (outliers excluded).

Figure 2a and Figure 2b show two distributions of aimed at characterizing and better under-
standing our dataset. After removing outliers, to allow for a better visualization, Figure 2a shows
the distribution of the maximum number of direct dependencies for each package. While one
out of four packages has one direct dependency, and the majority of packages has less than four
direct dependencies, there is a long tail of few packages having a larger number of dependencies.
Figure 2b shows the distribution of the package lifetimes (time period from the first to the
last release for each package). The peak is around 9 to 10 years, although most packages have
shorter lifetimes.

3.3. Metrics definitions
Understanding how the number of direct dependencies evolves as new releases of a package are
produced is not simple. There are many situations to consider: for some packages the number
of dependencies increases, and then remains stable, or maybe decreases afterward, or decreases
and then increases again. For some packages, dependencies grow or shrink quickly, for some

others slowly. To take into account these nuances, we define multiple metrics, with the aim
of characterizing the evolution of the growth of direct dependencies of a package release from
different points of view.

To define these metrics, consider for each package release 𝑖 a pair (𝑑𝑎𝑡𝑒𝑖, 𝑑𝑒𝑝𝑖) in the Cartesian
plane, where 𝑑𝑎𝑡𝑒𝑖 is the date of release 𝑖 (represented in days since the date of the first release,
i.e., 𝑑𝑎𝑡𝑒1 = 0) and 𝑑𝑒𝑝𝑖 its number of direct dependencies. The pair corresponding to release
1 (the first one) is (0, 𝑑𝑒𝑝1), and the pair for the last release 𝑛 of the package is (𝑑𝑎𝑡𝑒𝑛, 𝑑𝑒𝑝𝑛).
Using this notation, we define the following metrics:

Absolute Change = 𝑑𝑒𝑝𝑛 − 𝑑𝑒𝑝1 Difference of direct dependencies between the last and the
first release. This characterizes the net increase or decrease in number of dependencies.

First-Last Slope = 𝑑𝑒𝑝𝑛−𝑑𝑒𝑝1
𝑑𝑎𝑡𝑒𝑛

Slope of the straight line from the pair corresponding to the first
release, to the pair corresponding to the last release of the package. It measures the growth
from the first release to the last one, taking into account the time span between them. Positive
or negative values for this metric indicate an increase or decrease in dependencies. The larger
numbers represent steeper increases or decreases.

Linear Slope =
∑︀𝑛

𝑖=1(𝑑𝑎𝑡𝑒𝑖− ¯𝑑𝑎𝑡𝑒)(𝑑𝑒𝑝𝑖− ¯𝑑𝑒𝑝)∑︀𝑛

𝑖=1(𝑑𝑎𝑡𝑒𝑖− ¯𝑑𝑎𝑡𝑒)2 (𝑥̄ stands for the mean of the distribution 𝑥1 . . . 𝑥𝑛)
Slope of the straight line resulting of performing a linear regression fit for the pairs corresponding
to all releases of the package. This captures the overall trend, taking into account all releases.

Growth Fraction Fraction of the time during which a polynomial fit for all the pairs grows.
We use a second-order polynomial regression, for characterizing the cases when there is a mix
of increase / decrease periods with a single number which approximates the fraction of time
dependencies are growing. The fitting is therefore a function of the form 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. Its
derivative 𝑦′ = 2𝑎𝑥 + 𝑏 shows when the function increases or decreases, and when it changes
from one to the other. This metric is computed as the period during which the derivative is
positive, normalized between 0 and 1. 0 is for the case when there is no positive derivative,
therefore the number of dependencies never grows, and 1 is for the case when the derivative is
positive during the entire package lifetime, which means dependencies are always growing.

Package Absolute Change First-Last Slope Linear Slope Growth Fraction
Express 32 0.006 0.007 0.7350
Web3-utils 8 0.002 -0.001 0.5200

Table 1
Growth metrics for packages Express and Web3-utils.

Let us illustrate these metrics on our two example packages. All metrics values are reported
in Table 1. Metrics values for other specific packages are available in the reproduction package.

Figure 3 shows that Express experiences a steady increase in direct dependencies, up to 2018,
when it flattens. This is not captured by Absolute Change, First-Last Slope, or Linear Slope,
which all just show increase. Growth Fraction, in this case, captures the two phases in the
growth, but not exactly right: it signals correctly an increase up to 2021, but then it shows
a decrease which is not really happening. However, it clearly shows that the trend is not just
steady growth, as the other metrics show. Web3-utils starts increasing its dependencies (from
0 to 8) until later 2019, then remains stable, steps down sharply in mid 2021, and finally grows
again. Absolute Change and First-Last Slope only increase, while Linear Slope shows decrease
in dependencies. Growth Fraction captures the situation better, showing two phases, with a

decrease in the second which, even though not real, is still correct if we compare the plateau
around 2020 to the final years.

(a) Express (b) Web3-utils

Figure 3: Visualisation of the elements used to calculate the four dependency growth metrics for two packages.

4. Analysis Results of the Dependency Growth Metrics
This section present the results of computing the growth metrics on the entire dataset. The
descriptive statistics of all metrics are summarised in Table 2.

Table 2
Descriptive statistics for the four growth metrics for all considered packages

Metric Mean Median Std. Dev. Min Max Q1 (25%) Q3 (75%)

Absolute Change 8.5143 0 27.9878 -310 462 0 4
First-Last Slope 0.15190 0 2.2360 -44.286 65.5 0 0.003
Linear Slope 0.16595 0 1.8994 -13.676 46.786 0 0.003
Growth Fraction 0.53288 0.5775 0.33468 0 1 0.315 0.775

To avoid distortion from extreme values, for all the charts below we applied interquartile range
(IQR) filtering to remove outliers. This method removes values outside 1.5 times the middle
50% range, excluding extreme data while preserving typical behavior for accurate trends.

Absolute Change Figure 4(a) shows a histogram and a KDE of the distribution of Absolute
Change values for all packages, after removing some outliers to make the visualization more clear.
The distribution is centered around zero, with some skewness toward positive numbers (median
is 0, as well as Q1, but mean is close to 8.5, and Q3 is 4). The most populated bucket is the one
with a metric of 0 (more than 1,000 packages, or about half of all packages). The minimum
and maximum observed values are -310 and 462. According to this metric, packages tend not to
grow or shrink in number of direct dependencies, or do it very slightly. Most of them are quite
grouped around a variation of 0 (the same number of dependencies at the start and at the end
of the project). However, packages that grow tend to grow more than those that shrink. Some
packages have huge variations in the number of dependencies, in the order of hundreds of them.

First-Last Slope Figure 5(a) shows a histogram and a KDE of the distribution of First-Last
Slope values for all packages, after removing some outliers. The distribution is very much
concentrated around zero (Q1 and median are 0, Q3 is almost 0 as well), very slightly skewed
towards positive numbers. The central bucket, with slopes close to 0, is by far the larger.
There are some outliers with extreme slopes (less than -44 and more than 65 for packages with

(a) Absolute Change (b) Growth Fraction

Figure 4: Histograms and KDEs of Absolute Change and Growth Fraction for all packages (excluding outliers).

(a) First-Last Slope. (b) Linear Slope.

Figure 5: Histograms and KDEs of First-Last Slope and Linear Slope for all packages (excluding outliers).

decreasing and increasing dependencies, respectively). This metric shows even more stability in
the number of dependencies per package than the previous one. According to it, we could say
that, by far, most packages remain stable over time, even when some of them grow or shrink,
and only very few of them considerably. The growth from the first to the last release tends very
strongly to zero.

Linear Slope Figure 5(b) shows a histogram and a KDE of the distribution of Linear Slope
values for all packages, after outlier removal. The distribution is very much concentrated around
zero, with Q1, Q3, and median 0 or almost 0, very slightly skewed towards positive numbers.
The central bucket, with slopes close to 0, is by far the largest. There are some outliers with
extreme slopes (less than -13 and more than 46 for packages with decreasing and increasing
dependencies, respectively). There is a bit less dispersion than for First-Last Slope (standard
deviation of 1.9 versus 2.2). Once again, this metric mainly shows that packages are stable in
the number of their direct dependencies. There is even more concentration close to 0, with some
extreme outliers. We can say that linear growth of direct dependencies tends very strongly to
zero.

Growth Fraction Figure 4(b) shows a histogram and a KDE of the distribution of Growth
Fraction values for all packages, after outlier removal. The distribution has two groups con-
centrated in the extremes (0 and 1), and then another one, much lower, point of concentration
around 0.6. The distribution seems a bit skewed towards 1 (median is 0.58, mean is 0.53), and it
is relatively symmetrical. According to this metric, packages seem to spend more time growing
than shrinking in number of direct dependencies. However, there are more packages that reduce
their dependencies than packages that increase them, if we consider only those who either reduce

or increase dependencies during all their life, respectively (values of the metric of 0 or 1).

5. Other observations
Our results show that, in general, packages tend to keep their number of direct dependencies
stable. For cases with clear growth or decline, we investigated whether certain parameters
influence the likelihood of increasing or decreasing dependencies. We focused on the Linear Slope
metric to capture trends in dependency changes. We explored its relationship with maximum
dependencies, package lifetime, and number of releases per package. Table 3 presents descriptive
statistics for subsamples based on these criteria. Classification is based on median values: below
median are “low”, “short” or “few”; at or above median are “high”, “long” or “many”.

Table 3
Descriptive statistics of Linear Slope for specific populations of packages

Metric Mean Slope Median Slope Std. Dev.
few Max Dependencies 0.0002 0 0.0009
many Max Dependencies 0.3386 0.003 2.7037

short Lifetime 0.3678 0.001 2.8225
long Lifetime 0.0015 0 0.0071

low Number of Releases 0.3418 0 2.8393
high Number of Releases 0.0263 0.001 0.1744

Packages with many dependencies show a higher mean slope (0.3386) than those with fewer
(0.0002), indicating that more complex packages undergo more dependency changes. Similarly,
packages with a short lifetime have a higher mean slope (0.3678) than long-lived packages
(0.0015), suggesting that shorter-lived packages experience more dynamic dependency shifts.
Finally, packages with a low number of releases exhibit a higher mean slope (0.3418) than
those with a high number (0.0263), meaning that infrequently updated packages have more
drastic variations. The median slopes remain close to zero across categories, showing that most
packages maintain stable dependencies. In summary, we can state that complex, short-lived,
and infrequently updated packages more often experience notable dependency shifts.

We also examined how the number of direct dependencies per package evolves over time. For
this, we computed the mean and median number of direct dependencies for all packages at the
end of every year. We considered, for each package, the latest available release at the end of the
year (in other words, the latest release for that package that could be deployed at the end of
each year). If the package didn’t produce any release by that date, it is not considered. The
results of this analysis are presented in Figure 6.

The figure shows a rapid increase in mean number of dependencies between 2015 and 2019,
followed by a plateau starting around 2019. This plateau is likely to be influenced by the
composition and timing of our dataset, which was produced according to the situation in 2019.
Thus, packages that are “relevant” after 2019 are mist likely underrepresented, which could
explain why the increasing trend does not continue after 2019.

Several phases can be identified in the evolution of the mean number of direct dependencies per
package: slow growth until 2014, when both mean and median remain close to zero; expansion
until 2019, with a sharp increase in mean direct dependencies, while median growth happens
much more slowly; and plateau until the end of the time period, with both metrics remaining
stable. In addition to the growth patterns, it is worth noticing that the increase in the difference
between mean and median signals an increase in the spread of the distribution, with some
packages evolving towards a very high number of dependencies.

Figure 6: Mean and median number of direct dependencies over time.

6. Discussion
We answered 𝑅𝑄0 by defining four metrics, designed to capture different aspects of the growth
of direct dependencies, acknowledging the fact that there are many different growth patterns,
and when one metric may identify growth, another one may identify decline. However, when we
aggregate all packages, the results of these metrics mostly align. The two slope-based metrics
have very similar descriptive statistics, and the other two show consistent distributions.

This allows us to answer 𝑅𝑄1 in a conclusive way: the growth in number of direct dependencies
over time in the considered packages is positive, but very close to zero. Therefore, Lehman’s
laws do not seem to apply to this kind of growth for our sample of packages. If JavaScript
applications are growing, they will be in different ways (e.g. in terms of code size, or in terms of
transitive dependencies, which have not been considered in this paper).

Of course, this doesn’t mean that there are packages with steep increases or declines in the
number of direct dependencies. We found some related parameters which could be a predictor
for those cases, the most important of them being the age of the project (in number of releases
or in time): young packages tend to grow, and grow faster.

From the point of view of developers, direct dependencies can be controlled directly by package
maintainers. Therefore, their growth or decline falls completely under their responsibility. The
results in this paper may help them to have a benchmark for comparison, so that they can analyze
the evolution of their direct dependencies in the context of what is happening in comparable
packages. In fact, this was one of the reasons why we included packages “relevant to production”
in the dataset, instead of taking a random sample of packages: we want our study to be useful
for practitioners, so we need to let them compare their components with relevant packages.

7. Threats to validity
Construct validity. We defined four metrics to quantify the temporal evolution of direct
dependencies. Those metrics may not capture growth adequately, or may mask other effects
which would lead to incorrect conclusions. However, we defined these metrics to capture different
aspects of dependency growth, considering that the number of direct dependencies tends to be
relatively low.

For measuring package growth we considered only releases with the highest SemVer identifier

when there was more than one development branch. This aims to capture the “front wave” of
stable development, but may inaccurately reflect more complex development processes and usage
patterns. It could happen, for example, that for long periods of time, new branches are ignored
by users because they are still unstable, despite developers tagging them as stable releases.
Future work could consider other ways of selecting the releases to measure growth.

We can also not discard errors in the data source we used for retrieving packages, and in the
tools and scripts that we used for the analysis.

Internal validity. We selected the packages for building our base dataset based on several
metrics of ’relevance’. But those metrics could not really represent relevance, or maybe relevance
is not really relevant for this kind of study. Besides, the list is 5 years old, which means that the
relevance of those packages may have shifted since then. Finally, the list is maybe too short fo
be representative of ’relevant’ packages. However, a manual inspection of it show many packages
very relevant in the current software development, and the age of the list also allowed us to have
packages with a certain lifetime, important to being able of measuring evolution in them.

We built our base dataset following a filtering process, trying to capture the real evolution of a
package, removing all pre-release releases, and considering only versions "intended for deployment
in production". We consider that our filtering strategy ensures that the dataset remains reliable
and representative of real-world dependency trends, minimizing bias by eliminating unstable
releases and outdated branches, But maybe this does not capture well the deployment practices
of developers.

External validity. We cannot claim that all packages in any ecosystem behave the same way
as the packages in our base dataset. In fact, we cannot even claim that in the case of npm, all
packages behave like ours. We selected a very specific sample, trying to include in it packages
relevant for production environments. From this point of view, even when we don’t know if the
patterns that we have found are common in other collection of packages, we think we can claim
that we used a good sample of packages with an industrial interest, and therefore our results are
likely useful for other similar packages, at least in the npm ecosystem. Of course, our analysis is
limited in time. Even when the data is very recent (from March 2025), the list we are using is
from 2019. It could happen that the evolution of the npm ecosystem is such, that our results
are no longer valid for current ‘relevant’ packages.

8. Conclusion
To analyze how direct dependencies of npm packages evolve over time, we defined several metrics
to consider different aspects of their growth. We measured them on a curated collection of npm
packages, created with the main aim of including those relevant for production.

Understanding this evolution helps to understand to which extent Lehman’s laws apply to
applications built by composing packages, in which developers balance growth by adding more
code of their own with growth by adding dependencies on reusable components.

Our findings reveal that, while most packages exhibit stability in dependency counts, a small
subset shows either rapid growth or decline, maybe indicating shifts in software development
practices. These variations highlight the diversity in software evolution, where some packages
experience dependency expansion, while others undergo simplification or deprecation.

Acknowledgments. The research presented in this paper has been funded in part by the Spanish
Ministerio de Ciencia e Innovación, through project Dependentium (PID2022-139551NB-I00).
In addition, this research is supported by F.R.S.-FNRS research projects T.0149.22, F.4515.23
and J.0147.24.

Reproducibility and data availability. The data used in this paper, along with the final results,
and the software written to produce these results, are available in a reproduction package4.

4https://doi.org/10.5281/zenodo.15024304

https://doi.org/10.5281/zenodo.15024304

References
[1] M. Vieira, D. Richardson, The role of dependencies in component-based systems evolution,

in: International Workshop on Principles of Software Evolution, 2002, pp. 62–65.
[2] A. Decan, T. Mens, P. Grosjean, An empirical comparison of dependency network evolution

in seven software packaging ecosystems, Empirical Software Engineering 24 (2018) 381–416.
doi:10.1007/s10664-017-9589-y.

[3] M. M. Lehman, Laws of software evolution revisited, in: European Workshop on Software
Process Technology, Springer, 1996, pp. 108–124.

[4] I. Herraiz, D. Rodriguez, G. Robles, J. M. Gonzalez-Barahona, The evolution of the laws of
software evolution: A discussion based on a systematic literature review, ACM Computing
Surveys (CSUR) 46 (2013) 1–28.

[5] A. Zerouali, T. Mens, J. M. Gonzalez-Barahona, G. Robles, A formal framework for
measuring technical lag in component repositories—and its application to npm, Journal of
Software: Evolution and Process 31 (2018) e2157. doi:10.1002/smr.2157.

[6] D. Moreno-Lumbreras, J. M. González-Barahona, M. Lanza, Understanding the NPM
dependencies ecosystem of a project using virtual reality, in: Working Conference on
Software Visualization, 2023, pp. 84–92. doi:10.1109/VISSOFT60811.2023.00019.

[7] G. A. A. Prana, C. Bird, E. T. Barr, P. T. Devanbu, A. Hindle, Using practitioners’
insights to investigate reproducibility of software engineering studies, Empirical Software
Engineering 26 (2021) 1–37.

[8] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila, L. Williams, What are
weak links in the npm supply chain?, in: International Conference on Software Engineering,
2022, pp. 331–340.

[9] F. R. Cogo, G. A. Oliva, A. E. Hassan, An empirical study of dependency downgrades in
the npm ecosystem, IEEE Transactions on Software Engineering 47 (2019) 2457–2470.

[10] S. Mujahid, R. Abdalkareem, E. Shihab, What are the characteristics of highly-selected
packages? a case study on the npm ecosystem, Journal of Systems and Software 198 (2023)
111588.

[11] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, E. Shihab, Why do developers use
trivial packages? an empirical case study on npm, in: Joint Meeting on Foundations of
Software Engineering, 2017, pp. 385–395.

[12] S. Qiu, R. G. Kula, K. Inoue, Understanding popularity growth of packages in JavaScript
package ecosystem, in: International Conference on Big Data, Cloud Computing, Data
Science and Engineering (BCD), 2018, pp. 55–60. doi:10.1109/BCD2018.2018.00017.

[13] K. C. Chatzidimitriou, M. D. Papamichail, T. Diamantopoulos, N.-C. I. Oikonomou, A. L.
Symeonidis, npm packages as ingredients: A recipe-based approach., in: ICSOFT, 2019,
pp. 544–551.

[14] S. Haefliger, G. Von Krogh, S. Spaeth, Code reuse in open source software, Management
Science 54 (2008) 180–193.

[15] I. Pashchenko, D.-L. Vu, F. Massacci, A qualitative study of dependency management and
its security implications, in: ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1513–1531.

[16] D. A. Wheeler, Countering trusting trust through diverse double-compiling, in: Annual
Computer Security Applications Conference (ACSAC), 2005, pp. 13–48. doi:10.1109/CSAC.
2005.17.

[17] M. M. A. Kabir, Y. Wang, D. Yao, N. Meng, How do developers follow security-relevant
best practices when using NPM packages?, in: Secure Development Conference, 2022, pp.
77–83. doi:10.1109/SecDev53368.2022.00027.

[18] S. Scalco, R. Paramitha, D.-L. Vu, F. Massacci, On the feasibility of detecting injections
in malicious npm packages, in: International Conference on Availability, Reliability and
Security, 2022, pp. 1–8.

http://dx.doi.org/10.1007/s10664-017-9589-y
http://dx.doi.org/10.1002/smr.2157
http://dx.doi.org/10.1109/VISSOFT60811.2023.00019
http://dx.doi.org/10.1109/BCD2018.2018.00017
http://dx.doi.org/10.1109/CSAC.2005.17
http://dx.doi.org/10.1109/CSAC.2005.17
http://dx.doi.org/10.1109/SecDev53368.2022.00027

[19] A. Zerouali, V. Cosentino, T. Mens, G. Robles, J. M. Gonzalez-Barahona, On the impact of
outdated and vulnerable JavaScript packages in Docker images, in: International Conference
on Software Analysis, Evolution and Reengineering, 2019, pp. 619–623. doi:10.1109/SANER.
2019.8667984.

[20] N. Harrand, Software Diversity for Third-Party Dependencies, Ph.D. thesis, KTH Royal
Institute of Technology, Stockholm, Sweden, 2022.

[21] P. Goswami, S. Gupta, Z. Li, N. Meng, D. Yao, Investigating the reproducibility of NPM
packages, in: International Conference on Software Maintenance and Evolution, 2020, pp.
677–681. doi:10.1109/ICSME46990.2020.00071.

[22] S. Raemaekers, A. Van Deursen, J. Visser, The Maven repository dataset of metrics, changes,
and dependencies, in: Working Conference on Mining Software Repositories, IEEE, 2013,
pp. 221–224.

[23] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, S. Panichella, The evolution of project
inter-dependencies in a software ecosystem: The case of Apache, in: 2013 IEEE International
Conference on Software Maintenance, IEEE, 2013, pp. 280–289.

[24] D. M. German, B. Adams, A. E. Hassan, The evolution of the R software ecosystem,
in: European Conference on Software Maintenance and Reengineering, IEEE, 2013, pp.
243–252.

[25] M. M. Lehman, Programs, life cycles, and laws of software evolution, Proceedings of the
IEEE 68 (1980) 1060–1076. doi:10.1109/PROC.1980.11805.

[26] E. Wittern, P. Suter, S. Rajagopalan, A look at the dynamics of the JavaScript package
ecosystem, in: International Conference on Mining Software Repositories, ACM, 2016, pp.
351–361. doi:10.1145/2901739.2901743.

[27] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, W. M. Turski, Metrics and laws
of software evolution—the nineties view, in: International Software Metrics Symposium,
IEEE, 1997, pp. 20–32.

[28] M. M. Lehman, J. F. Ramil, An approach to a theory of software evolution, in: International
Workshop on Principles of Software Evolution, 2001, pp. 70–74.

[29] B. W. Chatters, M. M. Lehman, J. F. Ramil, P. Wernick, Modelling a software evolution
process: A long-term case study, Software Process: Improvement and Practice 5 (2000)
91–102.

[30] P. Wernick, M. M. Lehman, Software process white box modelling for FEAST/1, Journal
of Systems and Software 46 (1999) 193–201.

[31] Q. Tu, M. Godfrey, Evolution in open source software: A case study, in: International
Conference on Software Maintenance, IEEE, 2000, pp. 131–142.

[32] M. Godfrey, Q. Tu, Growth, evolution, and structural change in open source software, in:
International Workshop on Principles of Software Evolution, 2001, pp. 103–106.

[33] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, I. Herraiz, Evolution and growth in large
libre software projects, in: International Workshop on Principles of Software Evolution
(IWPSE), IEEE, 2005, pp. 165–174.

[34] A. Israeli, D. G. Feitelson, The Linux kernel as a case study in software evolution, Journal
of Systems and Software 83 (2010) 485–501.

[35] D. Coleman, D. Ash, B. Lowther, P. Oman, Using metrics to evaluate software system
maintainability, Computer 27 (1994) 44–49.

[36] C. Ridings, M. Shishigin, PageRank Uncovered, Technical Report, Technical report, 2002.
[37] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank Citation Ranking: Bringing

Order to the Web, Technical Report, Stanford Digital Libraries, SIDL-WP-1999-0120, 1999.

http://dx.doi.org/10.1109/SANER.2019.8667984
http://dx.doi.org/10.1109/SANER.2019.8667984
http://dx.doi.org/10.1109/ICSME46990.2020.00071
http://dx.doi.org/10.1109/PROC.1980.11805
http://dx.doi.org/10.1145/2901739.2901743

An Empirical Analysis of the GitHub Actions Language
Usage and Evolution
Aref Talebzadeh Bardsiri1, Alexandre Decan1,2 and Tom Mens1

1Software Engineering Lab, University of Mons, Belgium
2F.R.S.-FNRS Research Associate

With the increasing demand for efficient and high-quality software systems, the practice of Contin-
uous Integration, Deployment and Delivery (CI/CD) has become mainstream in software projects to
streamline their development pipelines. CI/CD services automate repetitive tasks such as building code,
running tests, and deploying applications. They have become an integral part of software development
because they enhance productivity, improve efficiency, and reduce the likelihood of human errors [1].

In the past, different CI/CD services (e.g., Travis, CircleCI and Jenkins) were frequently used in
GitHub repositories. Since the public release in 2019 of GitHub’s own integrated CI/CD solution called
GitHub Actions (hereafter shortened to GHA), it has become the most popular CI/CD tool on GitHub [2].
GHA allows repository maintainers to automate numerous activities, through YAML-based workflow
configuration files.

For writing workflows, GHA provides a rich set of language constructs (i.e., keys, structures, values,
etc.). According to Mernik’s definition of a domain-specific language (DSL) [3], the GHA workflow
syntax1 is a DSL that allows workflow maintainers to define workflows, jobs, steps, and more. Its
seamless integration with GitHub, its large marketplace of Actions, and its free plan for running
workflows for public repositories, have made GHA a compelling choice among developers [2, 4].

However, beyond adoption, researchers have highlighted that its use comes with multiple challenges.
Practitioners reported difficulties in understanding and writing workflow files. As an example, a
workflow maintainer said “YAML is untyped, which frequently leads to serious bugs in configuration
code. I wish there was a statically-typed and more reliable alternative to YAML available and officially
supported by GitHub Actions” [5]. Ghaleb et al. [6] further found that GHA workflow files are among
the most complex CI/CD automation services and can have high maintenance effort, while Zheng et al.
[7] observed that GHA workflow files frequently fail during execution, highlighting challenges related
to reliability and efficiency.

These findings suggest that GHA syntax and semantics may be poorly understood and insufficiently
mastered by workflow maintainers. Despite the widespread adoption of GHA, there is a lack of
comprehensive empirical studies that analyze the language constructs used in GHA workflow files, their
usage patterns, and their evolution over time. We believe that addressing this gap is the first step for
researchers to study current challenges in GHA workflows, such as their complexity and maintainability,
and to provide a set of best practices to overcome these challenges.

In this empirical study of GHA language and its usage, we therefore aim to answer the following
research questions:
RQ1 What are the constructs of the GHA language? A first step towards understanding the usage of

GHA is to identify its language constructs. To this end, we conduct a large-scale empirical analysis of
workflows and used the results as a proxy to enumerate the constructs of GHA. As an outcome of this
RQ, we identify 197 constructs.

RQ2 Which constructs are used in practice? Understanding the usage frequency of the different GHA
language constructs can reveal which constructs are central to workflow configurations and which

BENEVOL 2025: The 24th Belgium-Netherlands Software Evolution Workshop Enschede, 17-18 November 2023
$ aref.talebzadehbardsiri@umons.ac.be (A. Talebzadeh Bardsiri); alexandre.decan@umons.ac.be (A. Decan);
tom.mens@umons.ac.be (T. Mens)
� 0009-0005-3719-9716 (A. Talebzadeh Bardsiri); 0000-0002-5824-5823 (A. Decan); 0000-0003-3636-5020 (T. Mens)

© 2025 This work is licensed under a “CC BY 4.0” license.
1https://docs.github.com/en/actions/reference/workflows-and-actions/workflow-syntax

mailto:aref.talebzadehbardsiri@umons.ac.be
mailto:alexandre.decan@umons.ac.be
mailto:tom.mens@umons.ac.be
https://orcid.org/0009-0005-3719-9716
https://orcid.org/0000-0002-5824-5823
https://orcid.org/0000-0003-3636-5020
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

ones are more specialized. To answer this question, we analyze the frequency of all constructs extracted
from a large corpus of workflow snapshots. We conclude that only a small subset of them are frequently
used in practice, while the majority occur rarely.

RQ3 Which constructs contribute to GHA features? To better understand the purpose of the different
GHA constructs and to gain a higher-level view of the GHA language, we group constructs based on
the features they contribute to. We refer to features as logical groupings of language constructs. For
example, the matrix strategy is a feature that enables maintainers to run multiple instances of a job
with different configurations and it involves several constructs. The outcome of this RQ is a mapping
from constructs to features, along with an assessment of the number and nesting of constructs for
each feature.

RQ4 How are GHA features used in practice? From RQ2, we observed that a small subset of GHA
constructs are frequently used in practice. Building on this, understanding the frequency of usage of
GHA features provides a higher-level perspective on how workflows are configured and implemented.
We identify which features are commonly used and which ones are rarely observed in the workflows.
In addition, we analyze to what extent workflows use the available constructs for each feature, and
which constructs are most frequently employed in their implementation.
RQ5 How does the GHA language usage evolve over time? We analyze the evolution of GHA language

constructs and workflow features to understand how its use changed over time. This knowledge can
help us identify trends and change patterns in the usage of GHA.

To answer our research questions, we conducted an empirical study on a large-scale dataset of GHA
workflow histories. The dataset, provided by Cardoen et al. [8], contains over 3 million workflow
snapshots from 49K popular and active GitHub repositories related to software development, covering
the period from July 2019 to August 2025. Such results pave the way for a more in-depth study on the
complexity of writing and maintaining GHA workflow files.

Acknowledgments. This research is supported by F.R.S.-FNRS research projects T.0149.22 , F.4515.23
and J.0147.24.

References

[1] F. Zampetti, S. Geremia, G. Bavota, M. Di Penta, CI/CD pipelines evolution and restructuring: A
qualitative and quantitative study, in: Int’l Conf. Software Maintenance and Evolution (ICSME),
2021.

[2] M. Golzadeh, A. Decan, T. Mens, On the rise and fall of CI services in GitHub, in: Int’l Conf.
Software Analysis, Evolution and Reengineering (SANER), IEEE, 2022, pp. 662–672. doi:10.1109/
SANER53432.2022.00084.

[3] M. Mernik, J. Heering, A. M. Sloane, When and how to develop domain-specific languages, ACM
computing surveys (CSUR) 37 (2005) 316–344.

[4] A. Decan, T. Mens, P. Rostami Mazrae, M. Golzadeh, On the use of GitHub Actions in software
development repositories, in: Int’l Conf. Software Maintenance and Evolution (ICSME), IEEE, 2022.
doi:10.1109/ICSME55016.2022.00029.

[5] S. G. Saroar, M. Nayebi, Developers’ perception of GitHub Actions: A survey analysis, in: Int’l Conf.
Evaluation and Assessment in Software Engineering, 2023. doi:10.1145/3593434.3593475.

[6] T. Ghaleb, O. Abduljalil, S. Hassan, Ci/cd configuration practices in open-source android apps: An
empirical study, ACM Trans. Softw. Eng. Methodol. (2025). URL: https://doi.org/10.1145/3736758.
doi:10.1145/3736758, just Accepted.

[7] L. Zheng, S. Li, X. Huang, J. Huang, B. Lin, J. Chen, J. Xuan, Why do github actions workflows fail?
an empirical study, ACM Trans. Softw. Eng. Methodol. (2025). doi:10.1145/3749371.

[8] G. Cardoen, T. Mens, A. Decan, A dataset of GitHub Actions workflow histories, in: Int’l Conf.
Mining Software Repositories (MSR), ACM, 2024, pp. 677–681. doi:10.1145/3643991.3644867.

http://dx.doi.org/10.1109/SANER53432.2022.00084
http://dx.doi.org/10.1109/SANER53432.2022.00084
http://dx.doi.org/10.1109/ICSME55016.2022.00029
http://dx.doi.org/10.1145/3593434.3593475
https://doi.org/10.1145/3736758
http://dx.doi.org/10.1145/3736758
http://dx.doi.org/10.1145/3749371
http://dx.doi.org/10.1145/3643991.3644867

Language-Level Support for Multiple Versions for
Software Evolution
Tomoyuki Aotani1, Satsuki Kasuya2, Lubis Luthfan Anshar, Hidehiko Masuhara2 and
Yudai Tanabe2

1Sanyo-Onoda City University, Yamaguchi, Japan
2Institute of Science Tokyo, Tokyo, Japan

Abstract
While versioned packages are widely used in today’s software development, existing programming languages
allow to use them on the ‘one-version-at-a-time’ principle, which makes software evolution inflexible. We
proposed a notion called programming with versions that programming languages should allow to use multiple
versions of a package and designed programming languages based on this notion. In this presentation, we
overview the design principle of these languages and discuss how these languages can make software evolution
more flexible and future challenges in programming language design.

Keywords
Programming with versions, versioned software packages, package management systems, VL, BatakJava, Vython

1. Introduction

A versioned package is a unit of managing programs for modular software development. From a
programming language, a package is often associated with a module that provides a set of classes,
functions, types, variables, etc. Outside of a programming language, a package is often managed by
a package manager in which a version number of a package is used for distinguishing compatibility
between different implementations of the same package. There have been many package managers
developed for different programming languages such as npm1, Gradle1, PyPI1, RubyGems1, Cargo1, to
name a few.

Versioned packages play an important role in software evolution. Modules of a large-scale software
system are often managed as versioned packages so that each package can independently evolve without
concerning about the other packages. The notion of compatibility, i.e., whether one implementation
of a package can be replaced with another implementation, makes the developers easier to expect if
they can use a new implementation of a package without having serious problems. This is especially so
when a software system uses third-party packages.

However, current programming languages are associated with versioned packages in a limited and
less-flexible way because most languages can import merely one version of a package at a time. While
this limitation is reasonable (if there had been two implementations of a function, which one would
be used?), it causes many problems in software evolution, some of which can be exemplified by the
following scenarios.

• Alice is developing a web application and wants to update its application framework to a new
version for better rendering API. However, the new version has many incompatible changes and
her team had to modify many places in the application code even though they are irrelevant to
the new feature.

• Bob is developing an enterprise system that uses a version of a network library that known to
have a security flaw. However, his team cannot switch the library to a new secure version for a
long time because the new version has many incompatible changes.

BENEVOL 2025: The 24th Belgium-Netherlands Software Evolution Workshop, November 17–18, 2025, Enschede, The Netherlands
$ aotani@rs.socu.ac.jp (T. Aotani); satsuki.kasuya@prg.is.titech.ac.jp (S. Kasuya); masuhara@acm.org (H. Masuhara);
yudaitnb@prg.is.titech.ac.jp (Y. Tanabe)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1https://www.npmjs.com/, https://gradle.org/, https://pypi.org/, https://rubygems.org/, https://lib.rs/crates/cargo

mailto:aotani@rs.socu.ac.jp
mailto:satsuki.kasuya@prg.is.titech.ac.jp
mailto:masuhara@acm.org
mailto:yudaitnb@prg.is.titech.ac.jp
https://creativecommons.org/licenses/by/4.0/deed.en
https://www.npmjs.com/
https://gradle.org/
https://pypi.org/
https://rubygems.org/
https://lib.rs/crates/cargo

• Charlie is developing an arcade game and try to use a numerical package for improving character
movements. After writing the simulation code, he finds that the graphics library used in the game
requires an older version of the same numerical package. Unfortunately, those two versions are
not compatible with each other, and the language requires to choose one of them.

2. Programming with Versions

The authors propose the notion of programming with versions (PwV), which is to support multiple
versioned packages at the level of programming languages [1, 2, 3, 4]. The principle is to allow to use
multiple versions of a package in one program. From the programming language design point of view,
it is not difficult to design a language that can use multiple versions. It is more difficult to prevent
inconsistent usage of multiple versions. For example, when we use two versions of an encryption package,
a data encrypted by one version must be decrypted by the same version. To this end, we developed the
following language designs.

• We designed a functional PwV language [1, 3] where every function can have different versions
of implementations. Its type system guarantees that a program, even though it uses multiple
versions of implementations, each data is processed by the functions that are implemented in the
same version in order to maintain consistency.

• We designed a class-based PwV language based on Java [2] where not only functions but also
data can have different version of implementations. Its type system guarantees that a bundle
of data, i.e., an object, has its own version, and is always processed by functions, i.e., methods,
implemented in the same version.

• We designed a dynamically-typed PwV language based on Python [4]. Rather than relying on type
systems to guarantee version consistency, this language dynamically detects version inconsistency
based on data provenance.

3. Software Evolution with Multiple Versions at a Time

Though PwV languages need more work on their design and implementation, those languages will
bring more interesting challenges into software evolution. Given a greater freedom of using new
versions of packages, we need to guide developers so that they can gradually incorporate new versions
into their systems. Then notion of compatibility should also be reconsidered. For example, it is the
developer who judge compatibility for the semantic versioning. When versioned packages are integrated
into programming language semantics, we could mechanically judge semantic compatibility with a
theoretical background.

As there have been proposed a tremendous amount of methodologies for software evolution (with
traditional programming languages), revisiting those methodologies under the light of PwV languages
would also be interesting.

References

[1] Y. Tanabe, L. L. Anshar, T. Aotani, H. Masuhara, A functional programming language with versions,
The Art, Science, and Engineering of Programming 6 (2021).

[2] L. L. Anshar, Y. Tanabe, T. Aotani, H. Masuhara, BatakJava: an object-oriented programming
language with versions, in Proceedings of the International Conference on Software Language
Engineering, SLE 2022, 2022, pp. 222–234.

[3] Y. Tanabe, L. L. Anshar, T. Aotani, H. Masuhara, Compilation semantics for a programming
language with versions, in Proceedings of Asian Symposium on Programming Languages and
Systems (APLAS 2023), LNCS, 2023.

[4] S. Kasuya, Y. Tanabe, H. Masuhara, Dynamic version checking for gradual updating, Journal of
Information Processing 33 (2025) 471–486.

On the Transferability of a Bot Detection Model from
GitHub to GitLab
Cyril Moreau1

1Software Engineering Lab, University of Mons, Belgium

Abstract
Collaborative development platforms like GitHub and GitLab are central to software project lifecycles, but
the increasing presence of automated accounts, or development bots, complicates the analysis of contributor
behaviour. Existing development bot detection tools are primarily developed and evaluated on GitHub data,
raising questions about their transferability to other platforms. This work investigates the transferability of
BIMBAS, a state-of-the-art bot detection model for GitHub accounts, to GitLab. To make this transfer possible,
we built the necessary tooling to extract and map GitLab user events into activity sequences, and constructed a
ground-truth dataset of 593 annotated GitLab accounts (273 bots and 320 humans). Our experiments show that
BIMBAS trained on GitHub achieves a weighted F1-score of 0.936 when applied to GitLab accounts. These results
demonstrate that, although BIMBAS was designed for GitHub, it can be effectively transferred to GitLab, paving
the way for more reliable empirical studies across platforms.

Keywords
GitHub, GitLab, bot identification, transferability, machine learning, automation

1. Context and findings

On collaborative development platforms such as GitHub and GitLab, developers heavily rely on au-
tomation mechanisms that support them in managing increasingly complex projects. To deal with
repetitive, error-prone and time-consuming tasks such as testing or code reviewing, developers often
use automated user accounts, commonly referred to as development bots [1]. The presence of these
bots complicates empirical studies that rely on analysing human contributor activity, as the automated
actions of bots can introduce significant biases [2]. Consequently, it is crucial to accurately identify
automated accounts to distinguish human and automated activity.

Several tools for bot detection have been proposed in the literature, such as BoDeGHa [2], and more
recently BotHunter [3] and RABBIT [1]. The latter leverages BIMBAS, a machine learning model based
on user activity sequences generated through an activity mapping referred to as rbmap in this paper.
However, these existing approaches have been designed and validated exclusively on public GitHub
event data. To our knowledge, no automated bot detection tool has yet been systematically assessed on
GitLab, raising the question of their generalisation to other collaborative development platforms, and
highlighting the need for solutions dedicated to GitLab.

This work investigates the transferability of the BIMBAS model to GitLab. Transferring such a model
is not straightforward, since differences in available events, recorded activities, and platform-specific
practices require adapting the activity mapping and constructing an appropriate evaluation dataset.
In this work, we therefore adapt the activity mapping to GitLab and build a ground-truth dataset of
GitLab accounts, enabling us to evaluate whether a model trained on GitHub can effectively identify
bots on GitLab.

Since the rbmap activity mapping does not accurately represent user behaviour and is difficult to
adapt, Hourri et al. introduced ghmap [4], a more flexible mapping that better represents user behaviour.
Building on this, we developed glmap, an extension of ghmap for GitLab, which enables BIMBAS
to be applied on GitLab accounts. To evaluate the transferability of the model, we also built a new
ground-truth dataset of 593 semi-automatically labelled GitLab accounts (273 bots and 320 humans).

BENEVOL 2025
*Corresponding author.
$ cyril.moreau@umons.ac.be (C. Moreau)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:cyril.moreau@umons.ac.be
https://creativecommons.org/licenses/by/4.0/deed.en

Table 1
Performances of BIMBAS with different training and test mappings on GitHub and GitLab datasets. Precision
(P), Recall (R), and F1-score (F1) are reported for bots, humans, and a weighted average.

Mapping Evaluated on Bots Humans Weighted

Train Test P R F1 P R F1 P R F1

rbmap rbmap GitHub .905 .891 .898 .896 .910 .903 .900 .900 .900

rbmap ghmap GitHub .888 .883 .885 .887 .892 .889 .887 .887 .887
ghmap ghmap GitHub .902 .880 .891 .886 .907 .897 .894 .894 .894

rbmap glmap GitLab .886 .980 .931 .983 .900 .940 .940 .935 .936
ghmap glmap GitLab .902 .984 .941 .986 .916 .950 .949 .946 .946

As glmap relies on a different strategy than the original rbmap used in BIMBAS, we assessed the
impact of this change by creating a variant of BIMBAS trained with ghmap, and comparing it with
the original model. As shown in Table 1, performance differences are negligible. When BIMBAS is
evaluated with ghmap but trained with rbmap, the weighted F1-score decreases by only 0.13. This gap
is further reduced to 0.06 when BIMBAS is trained directly with ghmap. These results suggest that
BIMBAS is insensitive to the choice of activity mapping, indicating that variations in the set of activities
(such as those provided by GitLab) do not substantially affect its performance.

Concerning transferability to GitLab, one can observe from Table 1 that BIMBAS achieves a weighted
F1-score of 0.936 when evaluated on GitLab accounts using glmap. When the model is trained with
ghmap, which is conceptually closer to glmap, the score further improves to 0.946. These results indicate
that a model trained exclusively on GitHub generalises well to GitLab, and that leveraging an activity
mapping aligned with glmap further enhances cross-platform performance.

2. Conclusion

In this work, we introduced glmap, an activity mapping adapted to GitLab, and provided a ground-truth
dataset of 593 GitLab accounts in order to evaluate the transferability of the BIMBAS bot detection
model on GitLab. Building on these contributions, we showed that BIMBAS, originally designed for
GitHub, maintains a weighted F1-score of 0.936, which demonstrates its transferability to GitLab. These
findings highlight the feasibility of cross-platform bot detection and suggest many interesting directions
for future work, most notably the construction of larger and more diverse datasets and the extension of
the approach to additional collaborative development platforms.

References

[1] N. Chidambaram, T. Mens, A. Decan, Rabbit: A tool for identifying bot accounts based on their
recent github event history, in: 2024 IEEE/ACM 21st International Conference on Mining Software
Repositories (MSR), 2024, pp. 687–691. doi:10.1145/3643991.3644877.

[2] M. Golzadeh, A. Decan, D. Legay, T. Mens, A ground-truth dataset and classification model for
detecting bots in github issue and pr comments, Journal of Systems and Software 175 (2021) 110911.
doi:10.1016/j.jss.2021.110911.

[3] A. Abdellatif, M. Wessel, I. Steinmacher, M. A. Gerosa, E. Shihab, Bothunter: An approach to detect
software bots in github, in: 2022 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR), 2022, pp. 6–17. doi:10.1145/3524842.3527959.

[4] Y. Hourri, A. Decan, T. Mens, A dataset of contributor activities in the numfocus open-source
community, in: 2025 IEEE/ACM 22nd International Conference on Mining Software Repositories
(MSR), IEEE, 2025, pp. 159–163. doi:10.1109/MSR66628.2025.00035.

http://dx.doi.org/10.1145/3643991.3644877
http://dx.doi.org/10.1016/j.jss.2021.110911
http://dx.doi.org/10.1145/3524842.3527959
http://dx.doi.org/10.1109/MSR66628.2025.00035

Evolution-Resilient Class Contours
Mattia Giannaccari1, Marco Raglianti1

1REVEAL @ Software Institute – USI, Lugano, Switzerland

Abstract
Analyzing large scale object-oriented software systems is complicated. Analyzing their evolution increases the
complexity by one order of magnitude, due to the additional dimension of time. While software visualizations
can help to analyze a single system snapshot, having informative evolution-resilient visualizations is challenging.

We present our recent work on Class Contours, a novel visualization metaphor that depicts source code
entities as building facades by mapping domain properties as, for example, code-level features (e.g., attributes,
methods) on visual properties (e.g., doors, windows). Architectural patterns (as in urban architecture) emerge
naturally. We explore an evolution of the current implementation of Class Contours to include time in a flexible
yet deterministic, informative, robust, and scalable way.

Keywords
Class Contours, Evolution-Resilient Software Visualization, Software Evolution

1. Introduction

Comprehending classes is critical to evolve a codebase [1]. When analyzing object-oriented software
systems, developers need to reconstruct the role and behavior of a class in their mental models, from
scattered fragments of code [2], visualized as multiple continuous pages of text. Their focus often
wanders from packages in a top-down approach to classes in a bottom-up fashion, alternating between
different knowledge retrieval strategies in an opportunistic way [3]. Gathering new knowledge about
the system incrementally, by looking at overviews, is complemented by inspecting key points in detail
for specific application logic hotspots that provide information about the system’s inner working.

To address these needs we proposed Class Contours [4], leveraging the building facades metaphor
to use simple 2D architectural elements, which represent features of the classes in an intuitive and
coherent way. In the resulting architectural patterns (as in urban architecture), similar class roles
correspond to similar buildings in the Class Contours overview. It becomes easier at this point to
spot and analyze similarities and differences, to identify outliers and application logic hubs, to allocate
attention to specific parts of the system according to the task at hand. Internal (e.g., attributes, methods)
and external structure (e.g., clients, providers) appear on the facade of the building. For example, the
number of lines of code is mapped to the width of the structure, attributes are represented as doors,
and methods as windows, while, at a glance, the repeating glyphs start to form a pattern language.

2. Evolving ZION

We implemented the Class Contours metaphor [4] in a visualization tool, ZION (for which a tool demo
is under review at ICSE 2026), to validate our approach. With respect to the previous publication we
already improved its parsing mechanisms to more reliably extract class features (and provide better
future cross-language compatibility) by substituting VerveineJ with CodeQL.1 Meanwhile, we started to
consider strategies to compare class contours of two versions of a system to highlight the evolution
direction and which domain changes trigger a visually recognizable structural change. To achieve this
goal for evolutionary analysis, two features are missing from ZION’s current implementation.

BENEVOL’25: Belgium Netherlands Software Evoltuion Workshop, November 17–18, 2025, Enschede, The Netherlands
$ mattia.giannaccari@usi.ch (M. Giannaccari); marco.raglianti@usi.ch (M. Raglianti)
� https://mattiagiannaccari.github.io (M. Giannaccari); https://www.inf.usi.ch/phd/raglianti/ (M. Raglianti)
� 0009-0008-9356-2921 (M. Giannaccari); 0000-0002-6878-5604 (M. Raglianti)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1VerveineJ: https://modularmoose.org/developers/parsers/verveinej/ – CodeQL: https://codeql.github.com/

1

mailto:mattia.giannaccari@usi.ch
mailto:marco.raglianti@usi.ch
https://mattiagiannaccari.github.io
https://www.inf.usi.ch/phd/raglianti/
https://orcid.org/0009-0008-9356-2921
https://orcid.org/0000-0002-6878-5604
https://creativecommons.org/licenses/by/4.0/deed.en
https://modularmoose.org/developers/parsers/verveinej/
https://codeql.github.com/

Mattia Giannaccari et al. CEUR Workshop Proceedings 1–2

Pattern across multiple classes

Containment between packages

Classes inside a package

Package

Large chunks of application logic

Figure 1: Hierarchical view of Class Contours in a tree layout of packages for antlr4 classes.

Figure 2: Class Contours rectangle
packing (ArgoUML).

For positioning elements, ZION currently has just two layouts.
A horizontal tree layout (Figure 1) to arrange Contours mirror-
ing the structure of packages. And a rectangle packing layout
(Figure 2) for space efficient placement in compact overviews,
highlighting patterns at class level. We will discuss advanced po-
tential layout strategies that remain consistent across different
versions of the system, allowing to focus on the evolution of the
contours themselves. While robust layouts that are evolution-
resilient work for the city metaphor (e.g., [5]), we would like to
validate them in our simpler 2D representation.

The second missing feature is akin to normalization but in-
volves deciding which metrics to visualize as 1-to-1 mapping of
the underlying feature and which are an abstraction of a core
characteristic, independently from its “magnitude”. The original
intention of Class Contours was to represent the low level fea-

tures in high fidelity when zooming in on a single building, while striking a convenient middle ground
for scalability of overviews on large code bases. The new goal is to tackle the additional complexity of
evolution, and time as a new dimension, while letting the Contours highlight important changes.

3. Conclusion

We present our current implementation of Class Contours, the recent update of the parser and its
implications, while focusing on evolution-resilient layout strategies and normalization mechanisms
to further extend the Class Contours beyond single snapshot analysis of a system. We sketch out for
feedback the planned validation of our approach with the comparisons between UML class diagrams
and class blueprints [6] on specific maintenance and evolution tasks.
Acknowledgments: This work is supported by the SNSF project “FORCE” (Project No. 232141).
Declaration on Generative AI: The author(s) have not employed any Generative AI tools.

References

[1] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Connallen, K. A. Houston, Object-Oriented
Analysis and Design with Applications, 3rd ed., Addison Wesley, 2004.

[2] M.-A. Storey, Theories, methods and tools in program comprehension: Past, present and future, in:
Proceedings of IWPC 2005, IEEE, 2005, pp. 181–191.

[3] M.-A. Storey, D. F. Fracchia, H. A. Müller, Cognitive design elements to support the construction of
a mental model during software exploration, Journal of Systems and Software 44 (1999) 171–185.

[4] M. Giannaccari, M. Raglianti, M. Lanza, Skylines: Visualizing object-oriented software systems
through Class Contours, in: Proceedings of VISSOFT 2025, IEEE, 2025, pp. 64–68.

[5] F. Pfahler, R. Minelli, C. Nagy, M. Lanza, Visualizing evolving software cities, in: Proceedings of
VISSOFT 2020, IEEE, 2020, pp. 22–26.

[6] N. J. Agouf, S. Ducasse, A. Etien, M. Lanza, A new generation of CLASS BLUEPRINT, in: Proceedings
of VISSOFT 2022, IEEE, 2022, pp. 29–39.

2

Preliminary survey on CPS testing in various domains of
the industry
Guillaume Nguyen1,∗, Xavier Devroey1

1NADI, University of Namur, rue de Bruxelles 51, Namur, 5000, Belgium

Abstract
Cyber-Physical Systems (CPSs) help solve real-world challenges by gathering data and reacting physically to it in
real-time. Through advanced driving assistance systems (ADAS), medical devices, or uncrewed aerial vehicles for
agricultural purposes, CPSs are already well-present across various application domains. However, the testing
techniques and strategies are often specific to those domains due to the versatile deployments of those systems.
Furthermore, the constituent elements of CPSs are similar, so testing techniques from a specific domain could
be adapted to fit the requirements of another one. In this paper, we perform a preliminary survey to probe the
testing tendencies across CPS application domains.

Keywords
Survey, CPS, Testing, Standards, Regulations

1. Introduction

Cyber-Physical Systems (CPS) are ubiquitous and help solve daily challenges in many industry domains.
From medical devices to advanced driving assistance systems (ADAS), they facilitate and enable the
smooth operation of previously human-carried tasks. Of course, they should not endanger the security
and safety of human bystanders (users, operators, patients, etc.). Rajkumar et al. define CPS as

“... physical and engineered systems whose operations are monitored, coordinated, controlled,
and integrated by a computing and communication core.” [1, p. 1]

Emphasizing applied CPS across different industries, we can see that the application domain is as
wide as the number of human activities. Tekinerdogan et al. provide us with a general and complete
feature model for CPS [2]. They also listed 10 application domains which seem relevant when looking
at applications in the literature: Health where wireless medical devices presence is growing in hospital
and operating rooms [3], Smart Manufacturing with smart factories through industry 4.0 which aim
at increasing the efficiency of the product line either by reducing the costs or improving the flexibility
of the resources by using interconnected devices, sensors and actuators [4], Transportation with
advanced driver assistance systems (ADAS) alongside with other technologies aiming at self driving
and connected cars [5], Process Control with the detection of chemical compounds in water for
pollution detection and communication with waste-water plants [6], Defence with the upcoming of
Lethal Autonomous Weapon Systems (LAWS) [7], Building Automation with connected devices to
help monitoring and controlling a home and support the residents [8], Robotic Services in space
exploration for example with the Ingenuity mars copter which had to adapt itself to the aerodynamics
of Mars to perform the first successful flight there [9], Critical Infrastructure and the transitioning
from classical grid management tools to smarter ones in order to improve the efficiency of a grid [10],
Emergency Response by using CPS to increase the safety on construction sites [11], and Other for
other types of CPSs.

Our research aims to find a test-oriented classification framework for CPS to perform efficient testing,
considering the requirements and challenges of the various application domains. Indeed, as presented

BeNevol 2025: The 24th Belgium-Netherlands Software Evolution Workshop, November 17–-18, 2025, Enschede, The Netherlands
∗Corresponding author.
Envelope-Open guillaume.nguyen@unamur.be (G. Nguyen); xavier.devroey@unamur.be (X. Devroey)
Orcid 0000-0002-9724-6634 (G. Nguyen); 0000-0002-0831-7606 (X. Devroey)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

earlier, CPSs are classified mainly by application domain. However, the constituent elements for those
systems are pretty similar (sensors, actuators, computing unit, etc.). Thus, the testing effort could be
alleviated by consolidating the testing tools while keeping the domain-specific tests at later stages of
the testing process. For this classification, we approached CPS from 3 central axes:

CPS Testing - How are CPS tested across industries?

CPS Engineering - How are CPS built across industries?

CPS Context - What are the non-functional requirements of CPS across industries?

2. Background

We understand that CPS are ubiquitous and benefit from a great versatility in their deployment. However,
it seems to collide with other concepts from the industry, such as Embedded Systems, Internet of Things
(IoT), real-time systems, or more generally operational technologies. Indeed, IoT is a “concept used to
define or reference systems that rely on autonomous communication of a group of physical objects” [12].
We can see that IoT and CPS are related and should not be separated when defining and classifying
CPSs. When bringing CPS and IoT together, Liu et al. suggest that CPS “... deeply integrates the ability
of computing, communication, and control based on information acquisition in IOT.” [13, p. 28]. Lee and
Seshia see CPS as an approach to embedded systems [14]. In their book, they define IoT as offering a
means to interconnect sensors and actuators through networks to an interface inspired by the IT world,
such as Web Interfaces. However, while IoT could fit the earlier definition of CPS, it is not suitable
for time-critical real-world interactions. Indeed, Real-Time Control and Safety-Critical Systems require
low-level logic and architectural designs. Lee and Seshia intend to give an introductory course on all
the technical challenges of designing a CPS. In short, we could say that embedded systems are CPS
components that use IoT to communicate.

The literature concerning testing and testing methods for CPS is quite complete. Indeed, Zhou et al.
reviewed methods and test beds for testing CPS [15], they showed that CPS testing was a particularly
rich field with many different and complementary techniques. Indeed, they list the following testing
methods:

1. Model-Based testing (MBT), which is a formal method of checking the correctness of a model.
2. Search-Based testing uses meta-heuristics such as a genetic algorithm to generate test cases or

test data automatically.
3. Online Monitoring, when complete formal verification is not possible, analyzing systems at

runtime provides a formal technique that might leverage useful information.
4. Fault Injection testing, as producing failures artificially and consciously, speeds up the testing

process.
5. Big Data Driven testing and prospects on using big data analysis by storing a large amount of

data in CPSs.
6. Cloud Testing inspired by the advances of cloud computing and IoT.

They classify the testing methods into 4 objectives: conformance testing, robustness testing,
security testing, and fragility testing. Of course, they also list the various contributions in terms of
simulation-based testing, test-beds, and simulation-based test-beds for CPS by application domains,
which have their own set of techniques and objectives.

3. Survey

The target population of the questionnaire was people working for Belgian or at least European
companies in charge of governing whole or part of processes, including CPS design, development,
test, and production, with a good knowledge of technical requirements, corporate internal processes,

industry standards, and legal requirements. The initial sampling intention is to target as many actors
across industries as possible and provide an industry-specific overview of the more general challenges
faced when dealing with CPSs.

The 53-question questionnaire was built using a French online tool called ”Drag n Survey” that allows
the user to drag fields onto a form and complete the questions. Due to license limitations, we could not
use the automatic translation module, and we created three separate questionnaires in English, French,
and Dutch.

The participants were solicited via a LinkedIn post, LinkedIn direct messages, contact lists from the
Belgian CyberExcellence project, and contact lists from the computer science faculty of the University
of Namur. We also participated in 4 industrial forums (2 local and 2 international) to interact with
relevant companies directly.

Non-responses and dropouts were not monitored in real-time; however, as the level of knowledge
required to answer the questions was relatively high, we assumed that participants might not have had
sufficient knowledge to complete the questionnaire. As for missing data, we cleaned the data set of
unusable responses.

We downloaded an Excel file with two sheets for all three questionnaires to analyze the responses.
The ”Questions” sheet has all the consolidated responses to the questions, with the number of responses
to a specific question, for each multiple choice. The ”Respondents” sheet or participants have all the
individual responses to the questionnaire with IP addresses and time codes. A ”+” sign separates
multiple choices.

The extraction process is the following:

1. Load the three files in RStudio.
2. Load the questions from the ”Respondents” sheet columns from the three questionnaires inside

an R data frame.
3. In a new R data frame, load the information from the ”Questions” sheet and assign question ID

based on the ”Respondents” data frame.
4. Extract and consolidate all the rows from the ”Respondents” sheet from all questionnaires.
5. Remove NA rows and participants who said they couldn’t answer the questionnaire from the

final data frames.
6. Finally, identify dropouts and delete responses.

We had nine exploitable responses after soliciting respondents for 5 months and cleaning the data. It
might be because it targeted C-level personnel with highly technical knowledge of the systems and
corporate and regulatory expertise. They might not have the time to answer questions or be reluctant.
However, we do not have enough information to elaborate more on that. On the other hand, 5 of those
nine respondents agreed to be contacted for a case study, which is quite encouraging and will allow us
to push the quality of our research further. We are well aware that this research constitutes preliminary
research and should not be used to generalize the challenges regarding CPS across industries. However,
it offers a nice probe for further study.

4. Results

In this section, we present the various results from our survey. The tables are gathered in Section A.
Out of the 9 respondents, we gathered responses from a telecom companymarked asOther, a Process

Control, a Robotic Service, three Smart Manufacturing, and three Transportation companies. We
chose to present the following results by aggregating the data by domain of application. A description
of the respondents is shown in Table 1. Even though we received 9 answers, we gathered a wide
sample of industries and companies. All those companies used multiple devices at the same time, and
sometimes more than 10,000 different devices. Only the robotic service and the telecom company didn’t
use interactive devices, while we suspect our question was not understood correctly. Although we
formulated it as such: “How many OT devices does your company use? For example, a smoke detection

system with a smoke sensor, an alarm centre, and a sound alarm is composed of 3 devices.” and “As
previously mentioned, those devices often interact with each other. Is that the case in your company?”
Systems used within those companies usually comprise devices from different manufacturers with
proportions varying from 10 to more than 90%. Most of them also use industrial computers. Concerning
the management and the number of departments using CPSs, we had different responses and mostly no
answers.

Table 1
Overview of CPSs, interactions, and management by industry

Question Other Process Robotic Smart Man- Transporta-
Control Service -ufacturing -tion

Number of devices 1,000–10,000 >10,000 1,000–10,000 100; >10,000 10; >10,000
Device interaction No Yes No Yes Yes
Avg. devices interacting NA 10–100;

100–500
NA 10–100;

100–500
1–10; 10–100

Number of systems NA >100 NA < 10; >100 < 10; >100
Systems with devices from
different manufacturers

NA 50–90% NA 10; >90% 10–50%

Industrial computer used NA Yes NA Yes Yes
Same department manages
systems

NA Yes NA depends No

Number of departments NA NA NA 1; >3; NA >3

Results for testing CPSs In Table 2, we can see that most respondents carry out tests at various
levels, including functional and non-functional tests. Yet for the Other company, they don’t seem
to perform any testing themselves. In Table 3, we can see that most of them carry out tests before
integrating a new device into their systems. They also perform quality insurance tests. Concerning
the testing time spent at various phases of a product development, design, development, prototype and
production we can see in Table 4 that Smart Manufacturing and Transportation perform testing
from very short period of time to very long period of time at each phase while the Process Control
company did not perform tests in production when the Robotic service company only carried out
tests in production. In Table 5, we can see that various non-functional tests are performed at different
phases of the development process.

Results for engineering CPSs In Table 6, we see that the Smart Manufacturing and Trans-
portation companies have code developed internally, by manufacturers, and by third parties, which
is consistent with previous answers. Concerning the Other company, the results are intriguing; they
didn’t seem to perform tests while they developed the code internally. Overall, the responses seem to
be quite varied. Concerning programming languages and communication protocols presented in Table
7 and Table 8, the results are coherent with the industry standards, while we were surprised to find
high-level languages such as Python, Java, and C# in the programming languages of CPSs.

Results for context surrounding CPSs The context in which the various companies operate follows
the previous observations. Indeed, when looking at Table 9, the smart manufacturing and transportation
companies with risk analyses at the various phases of the product development process follow multiple
regulations and standards. However, every company only ticked the few regulations and standards
we suggested, showing a misunderstanding of the regulatory and standardization landscapes of their
industry. Free answers showed they had no idea about those, or they were following the provided
requirements lists received from headquarters (in the case of international companies). When looking
at the approval process in Table 10, we can see that there are multiple steps and multiple hierarchical
levels involved with sensibly more complex processes for Transportation companies. This is consistent

with Table 11 showing a longer period of time required to introduce new devices or components within
a system.

5. Conclusion

We presented results from 9 different companies grouped in 5 domains of industry. We encountered
many difficulties in gathering information from multiple companies. We tried hard to interact directly
with industrial actors during national and international forums, and we received enthusiastic responses
from people met in person; however, we could never reach past the legal department of those companies.
Furthermore, we never even reached a point where a non-disclosure agreement (NDA) was suggested.

Nevertheless, this survey offers interesting preliminary results showing the great variability in the
companies using or developing CPSs. Interestingly, Smart Manufacturing and Transportation
companies were particularly more tested, while we cannot reach conclusions with such a small dataset.

Concerning the future work, the Context surrounding the CPS development in the industry attracted
our attention concerning the lack of understanding of the various regulations and standards applicable.
This is similar to Zhou et al., who state that the CPS conformance (between a system and its specification)
is not well exploited, probably due to the complexity of the various standards applicable to those systems
[15]. Indeed, when looking at the regulatory landscape in the European Union, for example, multiple
challenges arise [16]. Thus, we will investigate the CPS compliance verification capabilities in the
industry. We will also contact the companies willing to perform a use case to continue gathering data
on industrial CPSs.

Acknowledgments

This research was supported by the CyberExcellence by DigitalWallonia project (No. 2110186), funded
by the Public Service of Wallonia (SPW Recherche).

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] R. Rajkumar, I. Lee, L. Sha, J. Stankovic, Cyber-physical systems, in: Proceedings of the 47th
Design Automation Conference, ACM, New York, NY, USA, 2010.

[2] B. Tekinerdogan, D. Blouin, H. Vangheluwe, M. Goulão, P. Carreira, V. Amaral, Multi-Paradigm
Modelling approaches for cyber-Physical Systems, Academic Press, San Diego, CA, 2020.

[3] M. R. Mahfouz, G. To, M. J. Kuhn, Smart instruments: Wireless technology invades the operating
room, in: 2012 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and
Sensing Systems (BioWireleSS), IEEE, 2012.

[4] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, M. Hoffmann, Industry 4.0, Bus. Inf. Syst. Eng. 6 (2014)
239–242.

[5] F. Arena, G. Pau, A. Severino, An overview on the current status and future perspectives of smart
cars, Infrastructures 5 (2020) 53.

[6] V. Garrido-Momparler, M. Peris, Smart sensors in environmental/water quality monitoring using
IoT and cloud services, Tren. Environ. Anal. Chem. 35 (2022) e00173.

[7] P. Scharre, Army of none: Autonomous Weapons and the future of war, W. W. Norton & Company,
2019.

[8] D. Marikyan, S. Papagiannidis, E. Alamanos, A systematic review of the smart home literature: A
user perspective, Technol. Forecast. Soc. Change 138 (2019) 139–154.

[9] T. Tzanetos, M. Aung, J. Balaram, H. F. Grip, J. T. Karras, T. K. Canham, G. Kubiak, J. Anderson,
G. Merewether, M. Starch, M. Pauken, S. Cappucci, M. Chase, M. Golombek, O. Toupet, M. C. Smart,
S. Dawson, E. B. Ramirez, J. Lam, R. Stern, N. Chahat, J. Ravich, R. Hogg, B. Pipenberg, M. Keennon,
K. H. Williford, Ingenuity mars helicopter: From technology demonstration to extraterrestrial
scout, in: 2022 IEEE Aerospace Conference (AERO), IEEE, 2022.

[10] X. Fang, S. Misra, G. Xue, D. Yang, Smart grid — the new and improved power grid: A survey,
IEEE Commun. Surv. Tutor. 14 (2012) 944–980.

[11] W. Jiang, L. Ding, C. Zhou, Cyber physical system for safety management in smart construction
site, Eng. Constr. Archit. Manage. 28 (2020) 788–808.

[12] J. P. Espada, R. R. Yager, B. Guo, Internet of things: Smart things network and communication,
Journal of Network and Computer Applications 42 (2014) 118–119. URL: https://doi.org/10.1016/j.
jnca.2014.03.003. doi:10.1016/j.jnca.2014.03.003.

[13] Y. Liu, Y. Peng, B. Wang, S. Yao, Z. Liu, Review on cyber-physical systems, IEEE/CAA J. Autom.
Sin. 4 (2017) 27–40.

[14] E. A. Lee, S. A. Seshia, Introduction to embedded systems, The MIT Press, 2.2 ed., MIT Press,
London, England, 2017.

[15] X. Zhou, X. Gou, T. Huang, S. Yang, Review on testing of cyber physical systems: Methods and
testbeds, IEEE Access 6 (2018) 52179–52194. URL: http://dx.doi.org/10.1109/ACCESS.2018.2869834.
doi:10.1109/access.2018.2869834.

[16] G. Nguyen, M. Knockaert, M. Lognoul, X. Devroey, Towards comprehensive legislative require-
ments for cyber physical systems testing in the european union, 2024. doi:10.48550/ARXIV.2412.
04132.

A. Tables

Table 2
Testing levels and types by industry

Industry Testing levels Functional tests Non-functional tests

Other NA NA NA
Process Control Unit tests + Integration tests + System

tests
Yes No

Robotic Service Integration tests + System tests Yes Yes
Smart Manufacturing Unit tests + Integration tests + System

tests
Yes Yes

Transportation Unit tests + Integration tests + System
tests (sometimes only System tests)

Yes Yes

Table 3
Integration tests and quality assurance practices

Industry Integration tests before introduction Quality assurance / testing on devices

Other Yes No
Process Control Yes Yes
Robotic Service No Yes
Smart Manufacturing Yes Yes/No (depending on case)
Transportation Yes/No (depending on case) Yes

Table 4
Available testing time per development phase

Industry Design phase Development phase Prototyping phase In production

Other NA NA NA NA
Process Control 1 week to 1 month 1 day to 1 week 1 week to 1 month NA
Robotic Service NA NA NA Less than 1 hour
Smart Manu-
facturing

1 day to 1 year (depend-
ing on case)

1 day to 1 year (depend-
ing on case)

1 day to 1 year (depend-
ing on case)

1 day to 1 year (depend-
ing on case)

Transportation 1 day to 1 year (depend-
ing on case)

1 month to 1 year (de-
pending on case)

1 month to 1 year (de-
pending on case)

Less than 1 hour to
1 year (depending on
case)

Table 5
Non-functional tests by industry

Industry Non-functional tests performed When performed

Other NA NA
Process Control NA NA
Robotic Service System documentation compliance with actual

behavior
Production

Smart Manufacturing Load testing, Data security Design + Development + Prototyping + Produc-
tion

Transportation Data security, System documentation compli-
ance, Load testing

Prototyping + Production

Table 6
Summary of code development by industry

Industry Internally By manufacturers By third parties

Other X
Process Control X X
Robotic Service X
Smart Manufacturing X X X
Transportation X X X

Table 7
Programming languages by industry

Industry Programming languages used

Other –
Process Control ST, Ladder, FBD, C++, Python, Java, Javascript, C#
Robotic Service –
Smart Manufacturing C, Python, Java, Javascript, PowerShell/Script
Transportation C, C++, Python, C#, ADA

Table 8
Communication protocols by industry

Industry Communication protocols used

Other –
Process Control Modbus TCP, CAN, USB, Ethernet, MQTT, OPC UA, IP
Robotic Service Ethernet, 4G/5G, Don’t know
Smart Manufacturing Modbus TCP, UART/USART, USB, Ethernet, MQTT, OPC UA, OPC DA, LoRA,

4G/5G, IP, Modbus Serial (disappearing)
Transportation CAN, USB, Ethernet, MQTT, OPC UA, LoRA, 4G/5G, IP, MVB, CIP

Table 9
Risk analysis, regulations, and standards by industry

Industry When do you perform a
risk analysis?

Regulations / directives
(laws)

Standards followed

Other NA NA NA
Process Con-
trol

Design + Development GDPR (EU 2016/679); NIS2
(EU 2022/2555); Regulation
(EU) 2019/2144 (Automated
driving system)

ISA/IEC 62443 (cybersecu-
rity); ISO 27002 (information
security management)

Robotic Ser-
vice

Prototyping NA NA

Smart Manu-
facturing

Design + Development +
Prototyping + Production

GDPR (EU 2016/679); NIS2
(EU 2022/2555)

ISA/IEC 62443; ISO 27002;
Summary by HQ

Transporta-
tion

Development + Production;
Prototyping + Production

NIS2 (EU 2022/2555); GDPR
(EU 2016/679) + NIS2 (EU
2022/2555); IATF (PFMEA re-
quired)

ISA/IEC 62443; Internal;
IATF

Table 10
Approval process: steps and people involved

Industry Steps (approx.) People (hierarchical levels)

Other 1 >3
Process Control NA NA
Robotic Service 2 2
Smart Manufacturing 1–3 2 to >3
Transportation 3–5 3 to >3

Table 11
Average time to introduce a new device or component

Industry Average duration

Other 1 month to 1 year
Process Control 1 week to 1 month
Robotic Service 1 week to 1 month
Smart Manufacturing 1 day to 1 year (depending on case)
Transportation 1 week to >1 year (depending on case)

FlaDaGe: A Framework for Generation of Synthetic Data
to Compare Flakiness Scores
Mert Ege Can1, Joanna Kisaakye1,2, Mutlu Beyazıt1,2 and Serge Demeyer1,2

1Universiteit Antwerpen, Belgium
2Flanders Make vzw, Belgium

Abstract
Several industrial experience reports indicate that modern build pipelines suffer from flaky tests: tests with

non-deterministic results which disrupt the CI workflow. One way to mitigate this problem is by introducing a
flakiness score, a numerical value calculated from previous test runs indicating the non-deterministic behaviour
of a given test case over time. Different flakiness scores have been proposed in the white and grey literature;
each has been evaluated against datasets that are not publicly accessible. As such, it is impossible to compare the
different flakiness scores and their behavior under different scenarios. To alleviate this problem, we propose a
parameterized artificial dataset generation framework (FlaDaGe), which is tunable for different situations, and
show how it can be used to compare the performance of two separate scoring formulae.

Keywords
Flakiness, Flakiness scores, Continuous Integration, Automation

1. Introduction

Software testing is a vital necessity for modern software engineering, ensuring system reliability, quality,
and developer productivity in environments of increasing complexity [1, 2]. In continuous integration
(CI) pipelines, automated test suites are executed to validate software works as intended before every
deployment. However, these pipelines face a critical challenge: flaky tests [3, 4].

Flaky tests are tests with non-deterministic outcomes, switching between different results under
identical conditions. This behavior reduces trust in the test results, wastes engineering efforts, and
disrupts CI workflows [5, 6]. Large-scale industrial studies within firms such as Google, SAP and
Microsoft show that flakiness continues to appear across projects and progressively worsens over time,
causing significant costs in debugging and pipeline stability [7, 8].

Despite the increasing attention to flaky tests from the research community, there is still one principal
challenge test engineers must grapple with, pertaining to the selection of a mitigation strategy. Before
a mitigation strategy may be selected, the magnitude of the flakiness problem must be assessed.
This is achieved through the use of flakiness scores and several scores exist in the white and grey
literature [9, 10, 11, 12, 13, 14, 15]. However, most of the scores presented in the literature are evaluated
against a dataset that is not accessible to the public. Indeed, at the time of this writing, there is no
benchmark dataset against which multiple flakiness scoring techniques can be assessed.

This lack of standardized assessment frameworks allowing for a direct comparison of different flaki-
ness scoring algorithms makes it harder to understand the strengths and weaknesses of the algorithms.
Existing approaches are often evaluated in isolated configurations with unique use cases, making it
difficult to establish a common baseline between algorithms. Moreover, a number of current research
reports are based on datasets derived from real-world systems or undisclosed industrial case studies,
which are individually valuable but do not always provide controlled conditions for systematic evalua-

The 24th Belgium-Netherlands Software Evolution Workshop (BENEVOL 2025)
$ m.egecan@gmail.com (Mert Ege Can); joanna.kisaakye@uantwerpen.be (Joanna Kisaakye);
mutlu.beyazit@uantwerpen.be (Mutlu Beyazıt); serge.demeyer@uantwerpen.be (Serge Demeyer)
� 0009-0006-2595-0311 (Mert Ege Can); 0000-0001-7081-5385 (Joanna Kisaakye); 0000-0003-2714-8155 (Mutlu Beyazıt);
0000-0002-4463-2945 (Serge Demeyer)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:m.egecan@gmail.com
mailto:joanna.kisaakye@uantwerpen.be
mailto:mutlu.beyazit@uantwerpen.be
mailto:serge.demeyer@uantwerpen.be
https://orcid.org/0009-0006-2595-0311
https://orcid.org/0000-0001-7081-5385
https://orcid.org/0000-0003-2714-8155
https://orcid.org/0000-0002-4463-2945
https://creativecommons.org/licenses/by/4.0/deed.en

tion. This gap hinders the ability to fairly assess the performance of competing algorithms in varying
flakiness scenarios.

To address these challenges, this research introduces a configurable dataset generation framework
(FlaDaGe) designed to simulate test suite behaviors with controllable flakiness trends. The framework is
algorithm-neutral, which means that it is not biased towards any algorithm and allows for the systematic
creation of artificial datasets with varying flakiness patterns. Finally, we demonstrate how it can be
used to create a simulated dataset to compare two flakiness scoring algorithms; the No-Fault-Found
(NFF) rate [11] and the Extended Flakiness Score (EFS) [12].

2. Flakiness Scores

Although re-running, monitoring, and fixing provide combined response strategies to flakiness, they
all benefit from a unified quantification to rank which tests are most in need of attention. Flakiness
scoring serves this purpose by calculating a numerical value for each test representing its level of
instability [9, 10, 11, 12, 13]. The flakiness score of a test is derived from analyzing its execution history
over a defined period, such as several days, weeks, or months in the CI pipeline. This score represents
the degree of inconsistency in the results of a test, based on the ratio and frequency of change between
the different test results. Tests that consistently produce the same result are considered stable, whereas
alternating results are marked as more flaky.

In practice, a test with a high flakiness score means its results are unpredictable, and thus a candidate
for re-run validation, long-term monitoring, or root cause analysis and fixing. For example, suppose
that two different tests each fail three times in the last 20 runs. Test A fails in the first three consecutive
runs, while test B fails sporadically such that failures occur in the third, eighth, and fourteenth runs.
Although their failure counts are the same, Test B will exhibit more complexity, an unpredictable pattern
when it fails, and therefore a higher flakiness score, reflecting its greater non-deterministic nature.

Flakiness scoring introduces several concrete benefits throughout the life cycle of software testing.

1. Prioritization: By being able to rank tests according to their instability, the development effort
can be focused on the improvements with the greatest impact on the reliability of the system.

2. Visualization: Scoring enables graphical representations of flakiness statistics. Heat maps or
historical flakiness plots offer valuable insight into the characteristics of flaky tests.

3. Alerting: Automated systems can flag tests whose flakiness score exceeds a predefined instability
threshold, suggesting a review by the engineer.

4. Tracking: Flakiness scores can be tracked over time to assess performance in system improve-
ments or component degradation.

Flakiness scoring also complements the re-run, monitor, and fix cycle. During re-runs, scoring helps
decide whether additional executions are needed to reach a confident conclusion. In monitoring, scores
support detecting trends depending on the change in score such as, constantly increasing values would
mean instability is increasing as time advances. In the fix phase, the flakiness score can enable assessing
the condition before and after the solution, validating whether the applied fix has effectively reduced
the flakiness. Ultimately, flakiness scoring introduces an automated means of managing test instability
in CI environments, allowing automated flaky test identification. In doing so, it strengthens the overall
reliability and maintenance of the testing suite, ensuring that the effort spent is efficient and carefully
maintained throughout the software delivery pipeline.

Table 1 shows a summary of the flakiness score definitions defined in the white and grey literature at
the time of this writing. As shown in the table, the majority of flakiness scores proposed in the literature
so far rely solely on the presence of test result history justifying the creation of an artificial dataset
generation framework with which to generate data to compare different scoring algorithms.

Table 1
Comparison of flakiness score formulae and the data required to compute the score.

Paper (Year) Formula Required Data Elements

1 Kowalczyk et
al.,(2020) [9]

Entropy:
𝑓(𝑅𝑣,*) = −

∑︀
𝑖∈(𝑃,𝐹) 𝑝(𝑖) log2 𝑝(𝑖)

Flip rate:
𝑓(𝑅𝑣,*) =

𝑛𝑢𝑚𝐹𝑙𝑖𝑝𝑠(𝑅𝑣,*)
𝑛𝑢𝑚𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐹 𝑙𝑖𝑝𝑠(𝑅𝑣,*)

Unweighted Average:
𝑈𝐻(𝑅) =

∑︀
𝑣∈𝑉 𝑡

𝑡−𝐻

𝑓(𝑅𝑣,*)
|𝑉 𝑡

𝑡−𝐻 |
Weighted Average:
𝑊𝜆,𝑃 (𝑅,𝑛) = 𝑍𝑛 = 𝜆𝑥𝑛+(1−𝜆)𝑍𝑛−1

𝜆
∑︀𝑛−1

𝑖=0 (1−𝜆)𝑖

where 𝑥𝑛 =
∑︀

𝑣∈𝑉 𝑛𝑃
(𝑛−1)𝑃

𝑓(𝑅𝑣,*)

Test Result History.
Weights.

2 Gruber et
al.,(2023) [10]

Flip rate:
𝑓𝑙𝑖𝑝_𝑟𝑎𝑡𝑒(𝑅) =
𝑛−1∑︀
𝑡=1

(︃
1

𝑛−1 ·

{︃
1, if 𝑟𝑡 ̸= 𝑟𝑡+1

0, if 𝑟𝑡 = 𝑟𝑡+1

)︃
Decayed Flip rate:
𝑓𝑙𝑖𝑝_𝑟𝑎𝑡𝑒(𝑅,𝑤) =

𝑛−1∑︀
𝑡=1

⎛⎝ 𝑤(𝑡)
𝑛−1∑︀
𝑢=1

𝑤(𝑢)

·

{︃
1, if 𝑟𝑡 ̸= 𝑟𝑡+1

0, if 𝑟𝑡 = 𝑟𝑡+1

⎞⎠

Test Result History.
Weight functions and Weights.

3 Rehman et
al.,(2021) [11]

NFF rate:
NFFRate𝑡 =

𝑓
𝑟

Stable NFF rate:
StableNFFRate𝑡 = NFFRate𝑡(𝑓, 𝑟)
Likelihood:
𝑃𝑡(𝑓, 𝑟, 𝑝) =

(︀
𝑟
𝑓

)︀
· 𝑝𝑓 · (1− 𝑝)𝑟−𝑓

where 𝑝 = StableNFFRate𝑡

Test Result History.
Test Report History (Whether an issue or
bug was filed for the test).

4 Kisaakye et al.,
(2024) [12]

Transition rate: 𝑇 (𝑅𝑣,*,{𝑟1,𝑟2}) =
𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑅𝑣,*,{𝑟1,𝑟2})

𝑛𝑢𝑚𝑇𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑅𝑣,*)

Multi transition rate:∑︀
{𝑖,𝑗}⊆{𝑟1...𝑟𝑛},𝑖̸=𝑗

𝑇 (𝑅𝑣,*,{𝑖,𝑗})

Unweighted Average:
𝑈𝐻(𝑅) =

∑︀
𝑣∈𝑉 𝑡

𝑡−𝐻

𝑓(𝑅𝑣,*)
|𝑉 𝑡

𝑡−𝐻 |
Weighted Average:
𝑊𝜆,𝑃 (𝑅,𝑛) = 𝑍𝑛 = 𝑌𝑛

𝜆
∑︀𝑛−1

𝑖=0 (1−𝜆)𝑖

where 𝑥𝑛 =
∑︀

𝑣∈𝑉 𝑛𝑃
(𝑛−1)𝑃

𝑓(𝑅𝑣,*)

|𝑉 𝑛𝑃
(𝑛−1)𝑃

|

and 𝑌𝑛 = 𝜆𝑥𝑛 + (1− 𝜆)𝑌𝑛−1

Test Result History.
Weights.

5 Facebook/Meta
Eng. Blog,
(2020) [13]

Probabilistic Flakiness Score:
PFS = 𝑃 (Failure | good state)
(estimated via Bayesian model).

Test Result History.
context/features to distinguish “good” vs
“bad” state
Bayesian priors for model parameters.

6 Rasheed et al.,
(2020) [14]

Flakiness Score:
The variability between test runs.

Test Result History.

7 Haben et al.,
(2024) [15]

Flake rate:
𝑓𝑙𝑎𝑘𝑒𝑅𝑎𝑡𝑒(𝑡, 𝑛) =

1
𝑤

𝑛−1∑︀
𝑥=𝑛−𝑤

𝑓𝑙𝑎𝑘𝑒(𝑡, 𝑥)

Where 𝑓𝑙𝑎𝑘𝑒(𝑡, 𝑥) is defined as:
𝑓𝑙𝑎𝑘𝑒(𝑡, 𝑥) ={︃
1, if test 𝑡 flaked in build 𝑏𝑥

0, otherwise

Test Result History.

3. Constructing a Fair Evaluation Ground

This study has one driving research question.▷
⊴

�
◁How can we design a unified and statistically controlled dataset that enables a fair and

algorithm-neutral comparison of different flakiness scoring algorithms?

To compare two fundamentally different scoring models, a shared evaluation ground is required. This
dataset should not encode the assumptions or internal mechanics of any algorithm. In response to this,
we propose a framework to enable the generation of an artificial dataset designed to simulate flakiness
patterns in a controlled and observable way. Test executions are modeled across multiple versions, and
result sequences are generated using probabilistic functions that reflect common flakiness patterns.

The dataset should also support the input requirements of all currently available algorithms. By
examining Table 1, we can see that most flakiness algorithms require a test result history and one a
test report history. For this purpose, we select one algorithm as a representative for all algorithms that
require a test result history, the one proposed by Kisaakye et al. [12], and another representative of
those algorithms that require test report presence, Rehman et al. [16]. By studying the requirements of
these two algorithms, we are able to gather the broad spectrum of requirements for an artificial dataset
generation framework.

4. Requirements for a Dataset

Before compiling the requirements for a dataset generation framework, it is essential to understand the
characteristics of the datasets originally used in the evaluation of the representative flakiness scoring
algorithms.

• Rehman et al. evaluated the NFF algorithm using industrial-scale test execution data collected
from Ericsson’s CI environment [16]. Crucially, each test run is labeled with one of the two
possible binary outcomes, Pass and Fail, and information about the presence of fault reports,
aligning with the definition of flakiness used by the NFF algorithm, failures without a report.

• Kisaakye et al. evaluated the EFS algorithm against artificial datasets designed to emulate flakiness
using controlled statistical parameters [12]. The first is created using the dataset generation
algorithm proposed by Kowalczyk et al., and models flakiness using probability mass functions in
which case each test case has a static flakiness probability, and each version has a probability of
revealing a fault [9]. The second adds support for more test results, Error and Skip, and more
complex flakiness trends such as Increasing, Decreasing, Sporadic, Sudden spikes or drops.

Therefore, to allow a valid comparison between such models, a “good” dataset must meet these
essential criteria:

• Different Result States: The dataset should include different result states to model real world
build systems that have more results than Pass and Fail.

• Report Association: Some failure states must include report flags, and others must lack them,
to simulate realistic distributions of fault attribution. This is a necessary requirement for all
flakiness scoring algorithms that define flakiness as a failure in the absence of a test report.

• Varied Flakiness Trends: Flakiness should evolve over time using various trend profiles, such
as increasing, decreasing, or stable, to test the ability of each algorithm to react to environmental
variations.

• Version and Run Structure: The dataset must have a clear definition of version and run to
allow scoring models to assess the historical progression of the test behavior. Each test should
have multiple runs per version, for multiple versions.

5. Artificial Dataset Generation Framework

The dataset generation framework is built around six concepts: Test, Suite, Version, Run, Trends, and
Report Presence. These concepts are often represented intuitively in the literature, however, they require
clear definitions since they are necessary for most of the flakiness scores presented in Table 1. They aid
in modeling different dimensions of flakiness behavior, and, when systematically combined, simulate
evolving test flakiness.

5.1. Test

A Test represents the fundamental unit of analysis in the dataset. It encapsulates flakiness flags, flakiness
probability, flakiness probability change (𝛿), and a population of versions.

Within this framework, each test is represented as a simulated execution trace spanning multiple
versions each with hundreds of individual runs. Each test is assigned a fixed flakiness flag at the
beginning of the dataset generation process: clear, faulty or none which means the test is flaky. flaky
tests are eligible to receive flaky results, while clear and faulty tests are constrained to emit only Pass
or Fail results, respectively. The probability of flakiness for flaky tests is randomly assigned based on
predefined thresholds. This flakiness probability is forwarded to versions where the effect of the version
trend is calculated, and determines the occurrence of a flaky result for every run generated within
the version. The distinction between flaky and non-flaky tests ensures that the ground truth flakiness
of each test is known in advance, forming the basis for evaluating how accurately an algorithm can
differentiate this status based solely on test results.

5.2. Suite

A Suite is the highest-level organizational unit in the dataset generation framework. It encapsulates an
entire simulation scenario defined by a unique combination of flakiness trends and execution parameters.
Each suite includes a population of tests and a consistent configuration of version and run trends,
thereby modeling a testing environment.

5.3. Version

A version in the framework represents a high level temporal segment within the dataset, simulating a
specific period in the development cycle. The version is equivalent to a unique state of the software
product within a CI system, capturing a specific execution configuration of the whole ecosystem, and
acting as a reproducible environment for automated test execution. It can be represented by various
identifiers depending on the development or deployment environment used, such as a build number or
a tagged release.

The first version typically serves as a control baseline, while subsequent versions re-calculate the
version-level flakiness probability according to version trend. The change on top of the test-level
flakiness probability depends on the selected version trend, and is calculated using the 𝛿 value and the
ratio of current version to total version count. By modeling multiple versions, the dataset generated
reflects the evolving nature of development workflows.

5.4. Run

A run within the framework is the smallest unit of the dataset that carries the core information of each
individual test execution performed for a test in each version. This concept corresponds to a run within
a CI system which is a single execution of a test within a particular version. When a run is generated,
the result is decided independently according to a pre-defined flakiness probability assigned to the test
for the current version.

Run-level flakiness probability, is calculated in a manner similar to version-level flakiness probabilities
according to the selected run trend of the suite. At this level, the run scales the version-level flakiness
probability using the ratio of the current run to the total runs.

5.5. Trends

Once the test results are organized by version and run, it is possible to interpret and characterize
emergent flakiness behaviors as trends. Trends provide time-wise information about test stability.
Recognizing these trends allows test engineers to correlate the evolution of flakiness and take smarter
precautions or apply more targeted solutions.

Flakiness trends can be analyzed at two levels; across runs, i.e, run trend, how individual test results
evolve over multiple executions within the same version, and across versions, i.e., version trend, how
the overall flakiness score for a given test changes from one version to the next. Table 2 summarises
the trends implemented within the framework and how they affect flakiness behavior at the version
and run level. The trends presented in Table 2 build upon those presented in [12] and aim to generalise
the flakiness patterns found in practice. For example, the application of a direct fix for a single test
within a single version, such as a code change, should trigger a sudden drop in test flakiness, while
the application of an indirect fix, such as network stabilization, may only be observed as gradually
decreasing flakiness.

5.5.1. Version Trend

The trend of the version defines the evolution of the flakiness by specifying a 𝛿 value and changing the
base flakiness of each test by that amount accordingly.

These patterns are configured globally per suite and applied across all flaky tests in that suite.
This ensures statistical consistency while maintaining a controlled environment for evaluating the
performance of the algorithms. The dataset generation process implements the trends in Table 2 as
three types of change patterns: linear, exponential, and sudden, which control how the 𝛿 value is applied
to intermediate versions:

Linear: 𝑝𝑣 = 𝑝𝑡 ± 𝛿 · 𝑣

𝑉
(1)

Exponential: 𝑝𝑣 = 𝑝𝑡 ± 𝛿 ·
(︁ 𝑣

𝑉

)︁2
(2)

Sudden: 𝑝𝑣 =

{︃
𝑝𝑡, 𝑣 < 𝑇

𝑝𝑡 ± 𝛿, 𝑣 ≥ 𝑇
(3)

where 𝑝𝑣 is the version-level flakiness probability 𝑣, 𝑝𝑡 is the test-level flakiness probability, 𝑉 and
𝑣 the total number and the current number of versions, respectively. 𝑇 is the threshold version and,
when reached, the 𝛿 value is applied in full. The positive and negative signs in the formulae depend on
whether the trend is increasing (positive) or decreasing (negative).

As an example, if a test is assigned a test-level flakiness probability of 0.3 and the 𝛿 value is set to
0.15, then:

• For a decreasing trend, the probability that the final version is reached would be 0.3−0.15 = 0.15.

• For an increasing trend, the probability that the final version is reached would be 0.3+0.15 = 0.45.

• For a uniform trend, the probability would remain constant at 0.3.

Table 2
Trends implemented within the framework and the induced behavior at the Version and Run level

Trend Version Run
Uniform Every flaky test retains its initial

flakiness probability.
The flakiness probability does not
change within a version. Flaky
instances are spread randomly
across the run sequence.

Increasing The initial flakiness probability of
every flaky test increases linearly
across versions.

The flakiness probability starts
from the probability 0 and linearly
increases to the version level flaki-
ness probability. Flakiness is con-
centrated in the later runs.

Decreasing The initial flakiness probability of
every flaky test decreases linearly
across versions.

The flakiness probability starts
from the version-level flakiness
probability and linearly decreases
down to 0 probability. Flakiness is
concentrated in earlier runs.

Exponentially Increasing The initial flakiness probability of
every flaky test increases exponen-
tially across versions.

The flakiness probability starts
from the probability 0 and in-
creases exponentially up to the
version-level flakiness probability.
Flakiness is concentrated in the
later runs, with an accelerating in-
crease.

Exponentially Decreasing The initial flakiness probability of
every flaky test decreases exponen-
tially across versions.

The flakiness probability starts
from the version-level flakiness
probability and decreases exponen-
tially to 0 probability. Flakiness is
concentrated in earlier runs, with
an accelerating decrease.

Suddenly Increasing The initial flakiness probability of
every flaky test increases by the
𝛿 value after a specific version is
reached.

All flakiness occurs in a window
after a specific run is passed. The
flakiness probabilities are set to
the probability 0 before the spe-
cific run and then the version-level
flakiness probability is assigned.

Suddenly Decreasing The initial flakiness probability of
every flaky test decreases by the
𝛿 value after a specific version is
reached.

All flakiness occurs in a window
before a specific run is passed. The
flakiness probabilities are set to
the version-level flakiness proba-
bility before the specific run, and
then the 0 probability is assigned.

5.5.2. Run Trend

While the version trend controls the overall flakiness per version, the run trends in Table 2 determine
their temporal distribution within a version. This trend simulates realistic scenarios where test flakiness
may not be evenly distributed across the execution timeline.

Decoupling the run trend from the version trend allows independent control over the frequency and
time when failures occur. This separation is essential to evaluate the ability of each algorithm to detect
both distributed and localized flakiness, revealing the strengths and weaknesses of each algorithm in
varying testing scenarios.

Unlike version-level, where the 𝛿 value represents the difference between the probabilities of the
first and last versions, the run trend scales the run-level flakiness probability between 0 and 𝑝𝑣 . This
means that the probability at a given run 𝑝𝑟 is calculated as:

𝑝𝑟 = 𝑝𝑣 ·
𝑟

𝑅

where the scaling ratio is derived from 𝑅 and 𝑟, the total run count and the current run number,
respectively. The dataset implements the same change patterns: linear, exponential, and sudden. The
run-level flakiness probabilities are calculated as:

Linear: 𝑝𝑟 = 𝑝𝑣 · ±
𝑟

𝑅
(4)

Exponential: 𝑝𝑟 = 𝑝𝑣 · ±
(︁ 𝑟

𝑅

)︁2
(5)

Sudden: 𝑝𝑟 =

{︃
0, 𝑟

𝑅 < 𝜌𝑇

𝑝𝑣,
𝑟
𝑅 ≥ 𝜌𝑇

(6)

where 𝜌𝑇 is the threshold ratio such that 𝜌𝑇 = 0.5 corresponds to the halfway point in the run
sequence.

5.6. Report Presence

Although flakiness scoring provides quantitative values for identifying flaky tests, it does not naturally
differentiate between explainable and unexplainable failures. In practical terms, not all failed tests with
a high failure count or sporadic occurrences present the same flakiness severity. The availability of an
attached failure report represents a documented explanation of why a test failed, which may include
information on the root cause, or context possibly reducing the effort required to address the problem
and ultimately the severity of flakiness.

Within the framework, this report presence is represented by a report flag attached to each test. When
a test is generated, the report flag is also decided independently according to a specified probability.

6. Results

We generate and evaluate a dataset using the framework, available in our replication package [17].
During evaluation, we focus on dataset creation and the extent to which the generated dataset captures
the characteristics necessary for a meaningful assessment of the two exemplary scoring algorithms,
the No Fault Found (NFF) algorithm by Rehman et al. [16] and the Extended Flakiness Score (EFS)
by Kisaakye et al. [12]. This includes demonstrating how the dataset meets the established criteria
for a “good” dataset, by examining the distribution of result and report associations, the diversity of
flakiness patterns, and how the two algorithms would “observe” the dataset. These characteristics are
demonstrated using graphs of version trends and run trends, as well as visual representations of flakiness
probabilities of the ground truth of a single suite. This suite selected is the one with the trend pair of
increasing version flakiness and decreasing run flakiness, which will be called the increase-decrease
suite for simplicity throughout the rest of this section. The example suite is one of the 49 generated
suites within the dataset, chosen because it tries to portray a realistic development scenario: A situation
in which overall flakiness increases with each version, due to the growing complexity of the software,
meanwhile the development team continuously works on improving the system stability and fixing
flaky tests during a version so the run-level flakiness gradually decreases.

6.1. Dataset Overview

By iterating through all the combinations of the version and run trends discussed in Section 5, the
framework creates a dataset with 49 unique test suites, each modeling a distinct flakiness pattern
simulated over a year.

Each suite consists of; 100 tests each simulated with 4 versions with 250 runs in each version. This
yields a total of 5,000,000 result entries for investigation.

Each test run in the dataset is represented by the following fields, ensuring compatibility with different
flakiness scoring models:

• Test ID, Release ID, and Run ID to support detailed tracking of each test result.

• Report Flag indicating whether a report was created for the test.

• Verdict One of (Successful, Fail, Error, Skip) indicating the actual result.

• Execution Timestamp, representing the time at which the test was executed.

6.1.1. Test-Level Flakiness Assignment

Figure 1 presents the average base flakiness probability assigned to each test in the selected in-
crease–decrease suite, sorted in ascending order. This base probability is not the final flakiness, but
rather serves as an initial parameter from which the flakiness for each version will be derived according
to the assigned version trend.

In this configuration, the flakiness probabilities assigned at the test level for flaky tests range between
10% and 40%. The distribution of test categories is 20% clear tests, 20% faulty tests, and 60% flaky tests,
reflecting a scenario in which the majority of the test suite is flaky to varying degrees.

6.1.2. Version-Level Flakiness Assignment

Table 3 describes, and Figure 2 illustrates each of the seven version trends by their version-level flakiness
probability averages.
Table 3
Version-Level Flakiness Trend Types

Trend Summary Equation Figure

Uniform Flakiness remains constant across versions. — 2g
Decrease Flakiness changes linearly across versions with a negative slope. 1 2a
Increase Flakiness changes linearly across versions with a positive slope. 1 2c
Decrease Exponential Flakiness changes exponentially across versions with a negative

rate (slow early decrease, faster later).
2 2b

Increase Exponential Flakiness changes exponentially across versions with a positive
rate (slow early increase, faster later).

2 2d

Sudden Decrease Flakiness changes suddenly at threshold version 𝑇 by a negative
step.

3 2e

Sudden Increase Flakiness changes suddenly at threshold version 𝑇 by a positive
step.

3 2f

6.1.3. Run-Level Flakiness Assignment

The Table 4 describes and Figure 3 illustrates each of the seven run trends by their run-level flakiness
probability averages.
Table 4
Run-Level Flakiness Trend Types

Trend Summary Equation Figure

Uniform Flakiness remains constant across runs. — 3g
Decrease Flakiness changes linearly across runs with a negative slope. 4 3a
Increase Flakiness changes linearly across runs with a positive slope. 4 3c
Decrease Exponential Flakiness changes exponentially across runs with a negative rate

(slow early decrease, faster later).
5 3b

Increase Exponential Flakiness changes exponentially across runs with a positive rate
(slow early increase, faster later).

5 3d

Sudden Decrease Flakiness changes abruptly at threshold run 𝑇𝑟 by a negative
step.

6 3e

Sudden Increase Flakiness changes abruptly at threshold run 𝑇𝑟 by a positive step. 6 3f

6.2. Assumptions on Flakiness Distribution

To ensure a fair, yet challenging, evaluation setting, the probabilities were carefully chosen. 20% are
designated as clear, always passing, and another 20% as faulty, always failing. This guaranties that
the presence of non-flaky tests, existing in equal proportions within the dataset, providing an equal
baseline by which flakiness can be distinguished. The remaining 60% of the tests are flaky. Each flaky
test was assigned a base flakiness probability drawn uniformly from the range of 0.1 to 0.4. This uniform
assignment ensures diversity in flakiness severity while avoiding bias toward particular instability
levels.

When generating each individual run, if the execution was flaky, its outcome was randomly deter-
mined according to additional probability weights. Reports were attached in only 20% of such flaky
runs, simulating the noise of a system. flaky results were assigned: skip (10%), error (10%), and fail
(80%). This selection ensures failures are the dominant, while still providing a variety of result states.

This probability design was motivated by two goals:

• Setting 60% of the dataset as flaky, slightly more than half of all tests, provides sufficient coverage
for evaluation while preserving a significant share of deterministic results.

• The distribution of the presence of the report (20%) was aligned with the combined proportion of
skip and error results (10% + 10%). In this way, both algorithms face an equal share of non-fail
result states.

6.3. Algorithm Perspectives

In this section, we examine how the NFF and EFS algorithms interpret the artificially generated dataset,
focusing on the increase-decrease suite as the representative example.

6.3.1. Trend Correlation with Ground Truth

Figure 4a and Figure 4c present the average NFF Rate computed in the example suite, allowing a direct
comparison with the ground truth trends shown in Figure 4b and Figure 4d. The version-level analysis
in Figure 4a shows an increasing average of the NFF Rate over successive versions. This pattern is
consistent with the expectation from ground truth as the system evolves and its complexity increases.
The run-level analysis in Figure 4c reveals a decreasing trend in the average NFF rates on run basis.
This reflects the ongoing stabilization efforts during the version, aligning with the ground truth towards
the later runs.

The alignment between these NFF Rate patterns and the ground truth demonstrates that the intended
version and run trends are preserved in NFF algorithm-specific metrics. This outcome confirms that
the NFF algorithm successfully captures the underlying flakiness dynamics through its own metric
definitions.

6.3.2. Outcome Correlation of NFF and EFS

Figure 5a and Figure 5b present the outcome ratios according to the assumptions embedded within the
NFF and EFS algorithms. When these figures are compared, both algorithms are observed to capture
the intended outcome composition of approximately 20% clear, 20% faulty, and 60% flaky tests.

The perspective of the EFS algorithm decomposes all possible outcomes successful, skip, error, and fail.
The NFF algorithm does not differentiate between clear and faulty tests; all tests rather than failures
without a report are visualized in green.

When comparing the two plots, a strong correlation is observed in the maximum and minimum
ratios of flaky results. Both algorithms consider the flakiest tests at around 20% flaky result ratio across
all runs, with the remaining flaky tests showing a gradual decrease over the suite.

The slight difference in the ratio between the NFF and EFS plots originates from the recognition of
skip (yellow), error (purple) states, and faulty tests (full red) by the EFS algorithm that are not considered

individually by the NFF algorithm. In addition to this visual difference, both graphs correlate with each
other in outcome variance and distribution in terms of providing a fair comparison ground for both
algorithms.

6.3.3. History Correlation of NFF and EFS

Figure 6a and Figure 6b present the test execution results for the first 20 tests of the last version of the
example suite. These histories visualize how each algorithm observes run-level flakiness according to
its mathematical definition of flakiness. NFF looks at report presence, while EFS looks at test outcomes
directly. Despite the definitional differences of flakiness, both algorithms exhibit strong alignment in
the positional distribution of flaky outcomes such that the same runs are generally marked as flaky
in both histories. This alignment demonstrates that the dataset satisfies run-level compatibility for
algorithm-agnostic comparisons.

Another notable observation is the visible influence of the decreasing run trend on the positioning
of the flaky outcomes. It can be observed that flaky outcomes are concentrated at the start of the
version. This pattern is consistent across both algorithms, further validating that the simulated dataset
accurately embeds the intended run trend characteristics.

6.4. Summary of Dataset Generation Results

The results presented in this section demonstrate that the artificially generated dataset successfully
embeds the intended version and runs trends while maintaining algorithm-natural compatibility. By
configuring diverse combinations with version-level and run-level flakiness probability distributions,
the dataset captures a wide range of possible software testing scenarios. The ground truth plots confirm
these patterns from the perspective of the target algorithms. The functional requirements of each
algorithm are satisfied by the generated dataset on report flags, result variety, and varying distributions
of flakiness.

Furthermore, algorithm-specific analyses for NFF and EFS show that both algorithms are able to detect
trends within the underlying dataset configuration, despite differences in their definitions of flakiness.
The close correlation between algorithm-specific metrics and definitions validates the integrity of the
dataset and ensures that the comparative analysis between NFF and EFS can be performed on a fair and
representative basis.

7. Related Work

The International Dataset of Flaky Tests (IDoFT) is a collection of flaky tests in Java and Python
represented as project URLs along with identifying features such as the commit when flakiness was
detected, module path, fully qualified test name, category, and status [18]. While this dataset is invaluable
to test flakiness research, the absence of actual test results hinders it’s usability as a benchmark for the
comparison of different flakiness scoring algorithms.

To address this gap, Wendler and Winter published a regression test history dataset to aid test flakiness
research [19]. Their dataset features eleven module-flakiness introducing commit combinations from
8 Maven projects included within the IDoFT dataset. The complete dataset contains 28200 test result
histories for 840 tests with history lengths ranging from 1 to 474 commits. This dataset would be an
excellent first step toward comparing flakiness scoring algorithms against real data. However, since the
underlying probability of flakiness is unknown, it cannot enable a rigorous comparison of flakiness
scoring formulae and algorithms under different situations. This is the gap our work seeks to fill.

Regarding dataset generation, one other study comes close to our work. FLAKYRANK is a ranking
framework proposed by Wang et al. that relies on augmented learning principles [20]. To address the
under-representation of flaky tests in their training dataset, Wang et al. used Generative Adversarial
Networks to create synthetic examples. However, the purpose of their dataset generation is different
from our work. Their dataset is based on the FlakeFlagger dataset [21]. Therefore, their dataset

generation approach is designed to create a dataset to evaluate approaches that identify flakiness
without rerunning. As such, test result and report history are not part of the features in their dataset
generation approach.

8. Threats to Validity

One threat concerns the gap between the flakiness of the artificial and real world. In our dataset
generation, we proposed a generic way of the data creation process by combining pre-defined trends.
Although this approach provides a systematic way to simulate controlled test histories, real-world
flakiness features occurring in unique patterns or edge cases may not be captured by our method.

In addition, since we re-implemented the flakiness scoring algorithms, our interpretation may differ
from the one used in the original works. However, we do not expect a considerable deviation from the
original implementations because we used the same formulae presented in their works.

Finally, the choice of algorithms we implemented for this work, while representative, presents a
threat since we do not capture any edge cases that may occur during scoring. However, we do not
expect large deviations in the way algorithms relying solely on test execution history will observe the
generated dataset.

9. Conclusion

Recognising the role of flakiness scores as decision support during the process of flakiness mitigation,
this work examined the different flakiness scoring algorithms proposed in the white and grey literature.
We identified a gap in the literature pertaining to a mechanism through which to generate reproducible
datasets to rigorously assess the strengths and weakness of different flakiness scoring algorithms. To
address this gap, we developed an algorithm-neutral dataset generation framework (FlaDaGe) that can
be used to model different flakiness situations and assess different flakiness scoring algorithms. Finally,
we demonstrated how it can be used to generate a dataset to assess the performance of two pre-existing
flakiness scoring algorithms defined in [16] and [12], showing how each algorithm “observes” the
simulated flakiness. In future work, the dataset generation framework can be extended to support a
wider range of features necessary for new flakiness scoring algorithms. A broader evaluation against
the rest of the algortihms, and a comparison of their performance against real world data, may also be
conducted.

Acknowledgments

This work is supported by the Research Foundation Flanders (FWO) via the BaseCamp Zero Project
under Grant number S000323N.

References

[1] F. Lonetti, E. Marchetti, Emerging software testing technologies, in: Advances in computers,
volume 108, Elsevier, 2018, pp. 91–143.

[2] A. Bertolino, Software testing, SWEBOK 69 (2001).
[3] O. Parry, G. M. Kapfhammer, M. Hilton, P. McMinn, A survey of flaky tests, ACM Transactions on

Software Engineering and Methodology (TOSEM) 31 (2021) 1–74.
[4] A. Tahir, S. Rasheed, J. Dietrich, N. Hashemi, L. Zhang, Test flakiness’ causes, detection, impact

and responses: A multivocal review, Journal of Systems and Software 206 (2023) 111837.
[5] Q. Luo, F. Hariri, L. Eloussi, D. Marinov, An empirical analysis of flaky tests, in: Proceedings of

the 22nd ACM SIGSOFT international symposium on foundations of software engineering, 2014,
pp. 643–653.

https://soft.vub.ac.be/basecampzero/index.html

[6] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, J. Bell, A large-scale longitudinal study of flaky
tests, Proceedings of the ACM on Programming Languages 4 (2020) 1–29.

[7] W. Lam, K. Muşlu, H. Sajnani, S. Thummalapenta, A study on the lifecycle of flaky tests, in:
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, 2020, pp.
1471–1482.

[8] A. Berndt, S. Baltes, T. Bach, Taming timeout flakiness: An empirical study of sap hana, in:
Proceedings of the 46th International Conference on Software Engineering: Software Engineering
in Practice, 2024, pp. 69–80.

[9] E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, A. Memon, Modeling and ranking flaky
tests at apple, in: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Software Engineering in Practice, 2020, pp. 110–119.

[10] M. Gruber, M. Heine, N. Oster, M. Philippsen, G. Fraser, Practical Flaky Test Prediction using
Common Code Evolution and Test History Data , in: 2023 IEEE Conference on Software Testing,
Verification and Validation (ICST), IEEE Computer Society, Los Alamitos, CA, USA, 2023, pp.
210–221. URL: https://doi.ieeecomputersociety.org/10.1109/ICST57152.2023.00028. doi:10.1109/
ICST57152.2023.00028.

[11] M. H. U. Rehman, P. C. Rigby, Quantifying no-fault-found test failures to prioritize inspection
of flaky tests at ericsson, in: Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, 2021, pp.
1371–1380.

[12] J. Kisaakye, M. Beyazıt, S. Demeyer, Extending a flakiness score for system-level tests, in: IFIP
International Conference on Testing Software and Systems, Springer, 2024, pp. 292–312.

[13] Meta Engineering Team, How do you test your tests? A Probabilistic Flakiness Score for Testing at
Scale, 2020. URL: https://engineering.fb.com/2020/12/10/developer-tools/probabilistic-flakiness/.

[14] S. Rasheed, J. Dietrich, A. Tahir, On the Effect of Instrumentation on Test Flakiness , in: 2023
IEEE/ACM International Conference on Automation of Software Test (AST), IEEE Computer
Society, Los Alamitos, CA, USA, 2023, pp. 123–127. URL: https://doi.ieeecomputersociety.org/10.
1109/AST58925.2023.00016. doi:10.1109/AST58925.2023.00016.

[15] G. Haben, S. Habchi, J. Micco, M. Harman, M. Papadakis, M. Cordy, Y. Le Traon, The importance
of accounting for execution failures when predicting test flakiness, in: Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engineering, ASE ’24, Association
for Computing Machinery, New York, NY, USA, 2024, p. 1979–1989. URL: https://doi.org/10.1145/
3691620.3695261. doi:10.1145/3691620.3695261.

[16] M. H. U. Rehman, Quantifying Flaky Tests to Detect Test Instabilities, Ph.D. thesis, Master’s thesis.
Concordia University. https://spectrum. library. concordia . . . , 2019.

[17] Anonymous, Fladage: A framework for generation of synthetic data to compare flakiness scores,
2025. URL: https://doi.org/10.5281/zenodo.17206909. doi:10.5281/zenodo.17206909.

[18] W. Lam, International Dataset of Flaky Tests (IDoFT), 2020. URL: http://mir.cs.illinois.edu/flakytests.
[19] P. Wendler, S. Winter, Regression-test history data for flaky-test research, in: Proceedings of

the 1st International Workshop on Flaky Tests, FTW ’24, Association for Computing Machinery,
New York, NY, USA, 2024, p. 3–4. URL: https://doi.org/10.1145/3643656.3643901. doi:10.1145/
3643656.3643901.

[20] J. Wang, Y. Lei, M. Li, G. Ren, H. Xie, S. Jin, J. Li, J. Hu, Flakyrank: Predicting flaky tests using
augmented learning to rank, in: 2024 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), IEEE, 2024, pp. 872–883.

[21] A. Alshammari, C. Morris, M. Hilton, J. Bell, Flakeflagger: Predicting flakiness without rerunning
tests, in: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), 2021, pp.
1572–1584. doi:10.1109/ICSE43902.2021.00140.

https://doi.ieeecomputersociety.org/10.1109/ICST57152.2023.00028
http://dx.doi.org/10.1109/ICST57152.2023.00028
http://dx.doi.org/10.1109/ICST57152.2023.00028
https://engineering.fb.com/2020/12/10/developer-tools/probabilistic-flakiness/
https://doi.ieeecomputersociety.org/10.1109/AST58925.2023.00016
https://doi.ieeecomputersociety.org/10.1109/AST58925.2023.00016
http://dx.doi.org/10.1109/AST58925.2023.00016
https://doi.org/10.1145/3691620.3695261
https://doi.org/10.1145/3691620.3695261
http://dx.doi.org/10.1145/3691620.3695261
https://doi.org/10.5281/zenodo.17206909
http://dx.doi.org/10.5281/zenodo.17206909
http://mir.cs.illinois.edu/flakytests
https://doi.org/10.1145/3643656.3643901
http://dx.doi.org/10.1145/3643656.3643901
http://dx.doi.org/10.1145/3643656.3643901
http://dx.doi.org/10.1109/ICSE43902.2021.00140

A. Flakiness Assignment

A.1. Test-Level Flakiness Assignment

Figure 1: Average Test-Level Flakiness Probability per Test

A.2. Version-Level Flakiness Assignment

Figure 2: Version-Level Flakiness Probability Averages

(a) Decrease (b) Decrease exponential

(c) Increase (d) Increase exponential

(e) Sudden decrease (f) Sudden increase

(g) Uniform

A.3. Run-Level Flakiness Assignment

Figure 3: Run-Level Flakiness Probability Averages

(a) Decrease (b) Decrease exponential

(c) Increase (d) Increase exponential

(e) Sudden decrease (f) Sudden increase

(g) Uniform

B. Algorithm Perspectives

B.1. Trend Correlation with Ground Truth

Figure 4: NFF and Ground Truth Pattern Correlation

(a) Average NFF rate per version (b) Average flakiness probability per version

(c) Average NFF rate per run (d) Average flakiness probability per run

B.2. Outcome Correlation of NFF and EFS

Figure 5: Comparison of NFF and EFS Ratio per Test

(a) NFF ratio per test (b) EFS result ratio per test

B.3. History Correlation of NFF and EFS

Figure 6: Comparison of NFF and EFS Views of History for the First 20 Tests

(a) NFF View of History of First 20 Tests (b) EFS View of History of First 20 Tests

Evaluating Test-Driven Code Generation: A Replication
Study
Giovanni Rosa*, Jesus M. Gonzalez-Barahona*

SoftDev group, Universidad Rey Juan Carlos, Spain

Abstract
The software engineering community is exploring ways of integrating Large Language Models (LLMs) into soft-
ware developing processes. One of such explorations is the use of techniques based on Test-Driven Development
(TDD), which presents significant challenges due to model variability, evolving APIs, and computational resource
demands. In this case, the interest is usually not in showing how well a model behaves, but how a technique may
improve the results of the LLM in certain scenarios.

This paper presents a replication study of one of those explorations: AlphaCodium, an approach implementing
a TDD-based workflow for producing code with LLMs, evaluated by solving competitive programming problems
from the CodeContests dataset. The primary goal of our study is not the replication itself, but to understand how
to empirically evaluate LLM-based code generation approaches, and the challenges involved in replicating such
experiments. However, our replication also aims to add more evidence about the effectiveness of the approach.

We extended the original open-source AlphaCodium implementation to support some open-weights models,
replicating the evaluation on the same dataset. In the process, we collected some supplementary inference metrics
such as latency and token usage.

By discussing the outcome and challenges encountered, we offer a set of actionable takeaways that can help
future replication studies of multi-step approaches for LLM-based code generation.

Keywords
code generation, TDD, LLM, replication study, performance evaluation, software engineering

1. Introduction

Large Language Models (LLMs) have shown remarkable capabilities in various natural language pro-
cessing tasks, and have been widely adopted in the software engineering domain [1]. Starting from
code assistants to help developers write, debug, and refactor code [2], the development of code-specific
LLMs has been a major focus in recent years [3, 4]. LLMs have been employed to tackle competitive
programming problems, where the models are measured by their capability of generating code following
specific functional requirements and passing a set of test cases. An important mention is AlphaCode [5],
developed by Google DeepMind, which demonstrated effective in that purpose.

The software engineering community is exploring ways of integrating LLMs into software develop-
ment processes, with different purposes: to produce better code, to collaborate in software maintenance
tasks such as bug fixing, or to improve how they take into account contextual information. One of these
explorations deals with the use of Test Driven Development (TDD) [6, 7] to improve code generation.
The general idea in this realm is to make LLMs iteratively generate and refine code based on a provided
set of test cases, which are expected to guide the model towards producing correct and robust imple-
mentations, given a specification. These approaches are usually evaluated by trying the approach to
solve coding problems for which tests can be found.

However, evaluating and replicating any kind of experiment involving LLMs can be challenging
due to the rapid evolution of the models, the inherent variability in LLM outputs, which can lead to
inconsistent results across different runs, and the fair evaluation of the approaches relying on LLMs,
which can be difficult due to the high costs associated with using proprietary models and the complexity

Benevol’25: 24th Belgium-Netherlands Software Evolution Workshop 17–18 November 2025, Enschede, The Netherlands
*Corresponding authors.
$ giovanni.rosa@urjc.es (G. Rosa); jesus.gonzalez.barahona@urjc.es (J. M. Gonzalez-Barahona)
� https://giovannirosa.com (G. Rosa); https://gsyc.urjc.es/jgb/ (J. M. Gonzalez-Barahona)
� 0000-0002-5241-1608 (G. Rosa); 0000-0001-9682-460X (J. M. Gonzalez-Barahona)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:giovanni.rosa@urjc.es
mailto:jesus.gonzalez.barahona@urjc.es
https://giovannirosa.com
https://gsyc.urjc.es/jgb/
https://orcid.org/0000-0002-5241-1608
https://orcid.org/0000-0001-9682-460X
https://creativecommons.org/licenses/by/4.0/deed.en

of setting up open-source models. This is even more challenging when the aim is not to evaluate the
model itself, but how a given technique (i.e., derivative of TDD) may improve the performance of LLMs.

In this paper, we present a replication study designed to understand how to empirically evaluate LLM-
based code generation approaches, and the challenges involved in replicating such experiments. To this
aim, we replicate the study of Ridnik et al. [8] which introduced AlphaCodium, a TDD-based approach for
enhancing the effectiveness of LLMs in code generation. The approach involves a robust pre-processing
phase, including problem reflection and test case augmentation, which extends similar approaches in the
literature [6, 7], and most importantly, the source code is publicly available on GitHub [9], facilitating
the replication process. We evaluate the approach on the CodeContests dataset [5], composed of coding
problems, which is the same used by the original study, demonstrating significant improvements over a
simple direct code generation method.

Note that in this kind of evaluation, the focus is not on the capabilities of the LLMs themselves,
but rather how certain techniques, usually related to software engineering practices, can be used to
improve results in certain tasks. Given this situation, our goal is to understand the challenges related to
the replication and evaluation of the complex workflow implemented in AlphaCodium, rather than the
performance of the LLMs themselves.

The authors of the original study provided an open-source implementation of AlphaCodium, which
we used as a starting point for our study. We leveraged this implementation by extending and modifying
it to support additional LLMs, such as open-weights models, and to extend the evaluation parameters.
Using our tool, we could replicate the original study with other LLMs, and report on some other
performance-related parameters not considered in it, such as latency and token usage. We report the
results of our replication study and provide some insights into the challenges and common errors that
arose during the replication process, along with a set of takeaways for future replication studies.

The rest of the paper is organized as follows. Section 2 presents the related work. Section 3 describes
the experimental protocol of the replication study. We present the results in Section 4, while in Section 5
we discuss what we learned during the replication process. Finally, in Section 6 we report the threats of
validity for the study and Section 7 concludes the paper.

2. Related Work

Large Language Models (LLMs) have been used extensively in code-related tasks, such as code com-
pletion and code generation. A seminal study in this field introduced the Codex models and evaluated
them on competitive programming problems [10]. They introduced the pass@k metric, which is now
widely used to evaluate code generation models. Several studies have conducted similar experiments to
produce models and approaches specialized in solving coding problems. For example, Google Deepmind
introduced AlphaCode [5], improved in AlphaCode 2 [11], which is able to reach a competitive level in
programming competitions.

Exploring ways of combining LLMs with software engineering practices aimed at improving code
quality, several studies investigated the usage of LLMs to solve coding problems with the aid of Test
Driven Development (TDD) practices. Piya et al. [6, 12] investigated the impact of TDD practices on the
performance of LLMs in solving LeetCode problems, showing that TDD can significantly improve the
performance of LLMs in solving coding problems. Fakhoury et al. [13] introduced TICODER, a workflow
for test-driven, interactive code generation. TICODER automatically generates tests and code candidates
from user requirements, allowing iterative refinement through user feedback. Their evaluation, using
both user studies and benchmark datasets such as MBPP [14] and HumanEval [10], demonstrates that
test cases can effectively enhance code quality. Similarly, Mathews et al. [7] proposed TGen, which
applies TDD principles to LLM-based code generation. Starting from input test cases, TGen generates
code and iteratively remediates it based on failed test outputs until all tests pass. Experiments on MBPP
and HumanEval show that TDD-based workflows significantly improve the correctness and robustness
of LLM-generated code.

AlphaCodium [8] proposes a similar technique, introducing a robust pre-processing phase including a

problem reflection step and a test cases augmentation procedure. The authors evaluated their approach
on the CodeContests dataset, showing that it significantly improves the performance of LLMs in solving
competitive programming problems. We selected AlphaCodium as the replication target for our study,
leveraging the open implementation provided by its authors [9]. We describe it more in detail in
Section 3.1.

3. Replication Study Design

We report a replication study of the paper of Ridnik et al. [8], with the goal of understanding how
to evaluate approaches built upon LLMs and the challenges faced when dealing with LLM-based
experiments designed not to evaluate the models themselves, but relatively complex pipelines using
them.

Our replication study is performed to answer the following research question:

RQ: To what extent are we able to replicate the empirical evaluation of the AlphaCodium approach?

We aim to replicate the results of the original paper as closely as possible, focusing on how to evaluate
approaches built upon LLMs and the related challenges when dealing with LLM-based experiments.

3.1. The AlphaCodium Approach

The approach presented in the original study we replicate, called AlphaCodium, is based on the idea
that generating code in multiple steps, with intermediate verification and refinement, can lead to better
results than a single-step generation. The overall approach is shown in Fig. 1, and can be summarized
as follows: Taking as input a coding problem description (specification) and the test cases to verify
the solution, AlphaCodium (i) generates a possible resolution procedure (i.e., list of steps to solve the
problem), (ii) generates a set of possible solutions and selects the best one, (iii) generates additional
test cases, and (iv) executes a code generation loop running the test cases and fixing the function
implementation. For additional details on the approach, we refer the reader to the original paper [8].

The original study conducted an empirical evaluation of the approach using different LLMs, including
open-weights models (DeepSeek) and closed ones, like OpenAI’s GPT-3.5 and GPT-4. The baseline is
composed of a single-step code generation using the same models, using the Zero-shot prompting
technique [15], which is basically the simplest way of prompting an LLM to generate code from a
specification. Therefore, this is a good example of an evaluation not aimed at evaluating the models
themselves, but how they can be improved by using some specific technique. Moreover, the original
study compared the results with AlphaCode [5], a state-of-the-art approach for code generation based on

Figure 1: The AlphaCodium approach proposed by [8].

LLMs. We selected AlphaCodium because we were interested in existing approaches for code generation
based on an iterative workflow, combined with TDD, and also because the source code of the tool is
publicly available [9].

3.2. Study Context

The context of the original study consists of the CodeContests dataset [5], a set of coding problems
extracted from several programming platforms, such as Codeforces1 and Codechef 2. Each instance of
the dataset contains the data to train and evaluate code generation models, including: (i) the problem
description, (ii) the function signature, (iii) the public and private test cases, and the (iv) solution code.
The full list of fields is summarized on the dataset card3.

We started with the exact same dataset used in the original paper, publicly available on HuggingFace 4.
While the dataset is composed of training, validation, and test splits, we only use the validation and test
splits, as did the AlphaCodium paper, for a total of 117 and 165 instances, respectively. They discarded
a total of 12 instances from the test set, resulting in a total of 156 instances, and 9 instances from the
validation set, resulting in a total of 105 instances. We investigated the reason behind this, and we
found in the code that if less than 20% of the solutions provided in the dataset are correct, the problem
is marked as invalid, and then skipped by the tool. Approximately, the knowledge cut-off date for the
problems contained in the dataset is around 2021.

3.3. Experimental Procedure

In this section, we describe the experimental procedure we followed to replicate the results of the
AlphaCodium approach, describing the differences with the original experiment.

3.3.1. Tool implementation

The AlphaCodium tool is implemented in Python and is publicly available on GitHub [9], which served
as our starting point for the code used for replicating the experiment. One of the main differences in
our replication is the supported LLMs. While the original paper uses OpenAI and DeepSeek models, we
extended the tool to support open-weights models deployed via vLLM5 and models accessible through
OpenRouter APIs6. We chose vLLM because it allows deploying HuggingFace models with production-
ready performance and improved reliability, compared to alternatives like Ollama7. OpenRouter was
selected for the wide availability of model providers, including OpenAI and Anthropic, and a unified
pay-per-use API.

Moreover, we made several improvements and fixes to enhance the tool’s reliability and robustness.
These include better output parsing (handling corner cases), improved exception handling, extended
logging (e.g., token usage and latency), and the support for additional configuration parameters. An
example is the option to run a single problem instance or a subset of instances, which facilitates
debugging and targeted re-execution in case of failures or interruptions. Also, the problem iterations
are configured to stop once a valid solution was found. We modified this behavior to always perform
the maximum number of iterations, to obtain a complete set of results of the approach effectiveness.

We implemented the storage of intermediate results for each iteration. This allows us to resume
the execution from the last completed iteration after interruptions. Also, we set an empty result entry
for the cases where the model fails to generate a solution or the generated solution does not pass
all the test cases within the maximum number of iterations. This because by default the tool will

1https://codeforces.com/
2https://www.codechef.com/
3https://huggingface.co/datasets/deepmind/code_contests
4https://huggingface.co/datasets/talrid/CodeContests_valid_and_test_AlphaCodium
5https://docs.vllm.ai
6https://openrouter.ai/
7https://ollama.com

https://codeforces.com/
https://www.codechef.com/
https://huggingface.co/datasets/deepmind/code_contests
https://huggingface.co/datasets/talrid/CodeContests_valid_and_test_AlphaCodium
https://docs.vllm.ai
https://openrouter.ai/
https://ollama.com

re-execute these iterations. These changes allowed us to parallelize the execution, significantly speeding
up the experiments since each problem instance is independent. We can conclude that we made mostly
engineering improvements while preserving as much as possible the original behavior of the tool.

3.3.2. Experimental parameters

The models used for our replication are the following:

• openai/gpt-3.5-turbo via OpenRouter APIs8: Since gpt-3.5 is not available on OpenRouter, we
opted for the turbo version. The knowledge cut-off is reported as September 2021.

• deepseek-ai/deepseek-coder-33b-instruct9 [4] via vLLM: The original paper only reports deepseek-
coder-33b as the model. We opted for the instruct version, better suited for instruction-following
tasks. The knowledge cut-off is not explicitly reported, but the model was released in November
2023, so we can assume the knowledge cut-off is a few months prior to that date.

• codellama/CodeLlama-34b-Instruct-hf 10 [3] via vLLM: Created from Meta’s Llama 2 family of
models, it is an open-weights model widely used for code generation tasks [16]. The model has
been trained between January and July 2023.

Given the cut-off date of the evaluation dataset, we can assess on the likelihood of contamination:
that the models had access to the dataset, including solutions, as a part of their training set. The versions
of Deepseek and CodeLlama which we use may have contamination, but GPT-3.5-Turbo should not
have it according to the reported knowledge cut-off date. In any case, we do not know how much the
contamination may affect the results.

We used the same execution parameters provided in the open source implementation of the tool
(i.e., TOML configuration file11). We made some modifications, mostly by adding new parameters, while
trying to keep them as close as possible to the original ones. Specifically, we kept the same model
temperature, which depends on the individual prompt and varies between 0.2 and 0.3. We set the
parameter for maximum number of iterations to 5. An iteration corresponds to a single attempt to
solve the problem and thus, we need a total of five attempts for each problem to compute the pass@5
metric. We kept the original parameters for the number of possible solutions generated during the
pre-processing step (i.e., 3), the total attempts to generate the initial code solution for the TDD loop
(i.e., 8). Also, we kept the total number of feedback iterations in the TDD loop set to 3, meaning that
the model has three chances to fix the code based on the failed test cases. Please refer to the original
configuration file for the complete list of available parameters.

We changed the execution timeout: While the original tool used a timeout of 90 seconds for inference
calls, we increased this to 600 seconds to help with the higher latency of open-weights models. This
value is the default for the OpenAI Python SDK. We used the use_baseline flag as a parameter to
switch between the AlphaCodium approach and the single-step code generation baseline, resulting in
two different resolution procedures for the experiment.

3.3.3. Evaluation metrics

The original paper uses the pass@k metric [10], the reference measure for code generation tasks. The
metric is computed as follows: Given a set of 𝑛 generated solutions samples for a problem, for up
to 𝑘 attempts, the pass@k metric measures the probability that at least one of the 𝑛 samples passes
all the test cases. As stated in Section 5.3 of the original paper, "[...] we perform 15-20 LLM calls per
solution, so a pass@5 submission involves 100 LLM calls". Therefore, we assume that they generated
5 solutions for each problem. Then, we computed the pass@5 metric12 using 5 samples per problem

8https://openrouter.ai/models/gpt-3.5-turbo
9https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
10https://huggingface.co/codellama/Codellama-34b-instruct
11https://github.com/Codium-ai/AlphaCodium/blob/main/alpha_codium/settings/configuration.toml
12By definition, computing pass@k requires at least 𝑛 ≥ 𝑘 samples per task.

https://openrouter.ai/models/gpt-3.5-turbo
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
https://huggingface.co/codellama/Codellama-34b-instruct

Figure 2: Example of the command used to deploy DeepSeek-Coder via vLLM.

v l lm s e r v e deepseek − a i / deepseek − coder −33b− i n s t r u c t \
−−hos t 0 . 0 . 0 . 0 −− po r t 8000 \
−−gpu−memory− u t i l i z a t i o n 0 . 9 5 \
−−max−model − l en 53700 \
−− t r u s t − remote −code \
−− tenso r − p a r a l l e l − s i z e 2

(𝑛 = 5). Each instance of the dataset, along with public and private test cases, contains an additional
set of generated test cases, created based on the existing public and private ones. We computed the
metric using both sets, as in the original paper, and also report the results using only the private test
cases to provide an alternative evaluation perspective that is closer to a real-world scenario for coding
challenges. Additionally, we report the collected statistics for each inference call as latency (i.e., time
taken to get the response from the model), token usage (i.e., total and completion tokens). We report
the average values computed for a single iteration, along with the total number of calls to the model.

3.3.4. Execution environment

We deployed the open-weights models on a multi-GPU shared server with a total of 4 A100 GPUs
(80 GB), an AMD EPYC 7313 16-Core and 256 GB of RAM. This allowed us to execute full precision
models, without the need for quantization, which could influence the performance of the models. For
the experiments using the OpenRouter APIs, we used a standard laptop machine with an Intel i7-12700H
CPU and 64 GB of RAM. To ensure a clean and isolated execution environment, we ran the tool inside a
dedicated Docker container. This enhances reproducibility of the execution environment and minimizes
any potential security risks associated with unexpected behavior of the generated code. The tool also
incorporates a sandboxing mechanisms limiting memory and potentially dangerous commands (e.g., rm).
The vLLM instance has been deployed inside a separate Docker container on the same server, using two
of the four GPUs with tensor parallelism. We then configured the AlphaCodium tool to interact with it
via REST APIs. Although the GPUs have sufficient memory to load the models, for DeepSeek-Coder we
needed to limit the maximum context length of the model. This did not affect our experiments, since
the prompts are much smaller than this limit. In Fig. 2 we provide an example of the command used to
deploy the model.

4. Replication Study Results

Table 1 presents the pass@k scores from our replication study, using 𝑘 = 5 and 𝑛 = 5 samples per
problem instance. We compare these results with those reported in the original paper [8]. The outcomes
are comparable and generally consistent with the original scores.

For the baseline approach, our pass rates are slightly higher, while for AlphaCodium the results are
similar. This difference may be attributed to the high variance in results due to the limited number of
samples per problem instance, particularly for the baseline, which relies on a single call to the LLM.

CodeLlama remains the worst performing model, but its results are still consistent with the original
study, where the AlphaCodium approach outperforms direct solving. We do not have a direct comparison
for GPT-4, the best-performing model in the original paper. However, given the release dates and
knowledge cut-offs, it is reasonable to assume that it is more capable than the other models, likely
benefiting from newer data, training procedures, and having portions of its training data overlapping
with the CodeContests dataset.

Table 2 shows the results obtained by measuring the pass@5 score only on the private test set. We
can conclude that having fewer test cases makes the overall score higher, assuming that it is easier to

Table 1
Summary of the results for the pass@5 score evaluated on validation and test splits. The symbol † indicates
those from the original paper [8].

Model Validation Set (pass@5) Test Set (pass@5)

Zero-Shot AlphaCodium Zero-Shot AlphaCodium

DeepSeek-33B† 7% 20% 12% 24%
GPT-3.5† 15% 25% 8% 17%
GPT-4† 19% 44% 12% 29%
deepseek-ai/deepseek-coder-33b-instruct 10% 18% 14% 21%
openai/gpt-3.5-turbo 11% 22% 10% 21%
codellama/CodeLlama-34b-Instruct-hf 2% 5% 4% 8%

Table 2
Summary of the results for the pass@5 score evaluated only on the problems’ private test set.

Model Validation Set (pass@5) Test Set (pass@5)

Zero-Shot AlphaCodium Zero-Shot AlphaCodium

deepseek-ai/deepseek-coder-33b-instruct 20% 27% 22% 23%
openai/gpt-3.5-turbo 19% 27% 13% 19%
codellama/CodeLlama-34b-Instruct-hf 6% 9% 10% 5%

Figure 3: Summary of the inference statistics collected for the experiments running AlphaCodium.

produce a solution that passes all the tests. However, the relative performance of the models remains
the same, with AlphaCodium achieving better results than the baseline approach.

Fig. 3 shows the statistics collected during the model inference. The values represent the average value
for a complete execution of a single instance (single iteration). The latency of GPT-3.5-turbo is lower
than the other models, because of OpenRouter. A fairer comparison is between DeepSeek-Coder-33B and
CodeLlama-34B, both deployed on the same hardware, where we can see that the former is much slower
than the latter, probably due to the complexity of the model. In terms of token usage, GPT-3.5-turbo is
more efficient despite performing similarly to DeepSeek-Coder-33B in terms of number of requests and
achieved pass rate. Additionally, the total token usage for AlphaCodium is significantly higher than
for the baseline approach, as expected, since it makes multiple requests to the LLM for each problem
instance. For a fairer comparison, it would be better to consider the overall cost of each approach, or to
allocate the same token budget to both methods and compare their results accordingly.

5. Challenges and Lessons Learned

Replicating and evaluating the experiments proved to be challenging, specifically when dealing with
large language models (LLMs) that evolve rapidly. Below, we outline the issues we encountered, our
mitigations, and lessons learned.
Flaky formatting errors. The non-determinism of the execution of the models led to flaky errors

related to formatting in the generated YAML output. Actually, the prompt requests to generate a
YAML-formatted output with the required fields (e.g., test cases, resolution procedure, etc.). However,
some models struggled to adhere strictly to this format, leading to parsing errors when the output is
processed by a YAML parser. We chose to not force the parsing of that output, considering those cases
as invalid responses from the model.
Token generation loop. In our replication, we worked with LLMs that are older and less capable

than current ones. A recurrent issue, especially with deepseek-coder-33b-instruct, is that the
model sometimes enters a token generation loop, repeatedly generating the same or random tokens
without making progress toward a valid response. In those cases, the inference exceeds the timeout and
the generation stops. Identifying these cases is not trivial. One strategy could be to use streaming output
and monitor the generated tokens, although that would make the code more complex. Fortunately, we
observed that the average latency for normal responses is much lower than for these generation loops
(see Fig. 3). Thus, a simple and effective mitigation is to use an anomaly detection heuristic based on a
threshold on average latency to identify these cases, and rerun the inference.

Unable to execute the generated code. Another issue is that, in several cases, the generated code
cannot be executed either due to syntax errors or missing dependencies. Even if the AlphaCodium
pipeline includes an iteration phase with a code-fixing loop, we found that some models struggle to
generate syntactically correct code, leading to execution failures. Examples are invalid code indentation,
error while parsing the input of test cases, recalls to missing functions or files, accessing invalid list
ranges or invalid type comparison (e.g., string with integer). Other frequent errors come from the
presence of explanations inside the code block that the model provided, leading to execution errors. In
a few cases, the execution silently fails with no output or errors. We concluded that the code is not
executable, and we count these cases as failures.

5.1. Takeaways

In the following, we summarize some lessons learned and challenges faced during the replication study.
Û Reliable Evaluation Tools. We aimed to replicate the evaluation pipeline of the target paper as

closely as possible, extending the provided codebase to support different models and infrastructures. Our
goal was to focus on having a very reliable tool, allowing to re-run individual problem instances without
restarting the entire process. We found it fundamental to have a reliable and well-tested evaluation
tool, or at least, to have a starting basis to build upon. We encourage the research community to share
their evaluation tools and pipelines to facilitate replication and comparison of results. A strategy could
be to reuse and extend existing benchmarks such as LiveCodeBench [17], or consider adopting libraries
like HuggingFace’s evaluate13.

Û Fast and reliable inference infrastructure. A significant amount of effort was devoted to
setting up an inference infrastructure capable of running large models efficiently. We initially opted for
Ollama, a popular and easy-to-use model serving tool. However, we found that its model compression
format is not well suited for multi-GPU settings and complicates replication. We switched to vLLM
to avoid provider-specific artifacts and ensure that our results could be replicated by others by using
standard tools and the open-weights models offered by Hugging Face.

We deployed a single vLLM instance with tensor parallelism across our multi-GPU server, leading to
a better load balancing and faster inference times compared to a single instance per GPU. Setting up
such an environment is non-trivial and requires significant technical expertise. A useful contribution is

13https://github.com/huggingface/evaluate

https://github.com/huggingface/evaluate

to have a set of guidelines and scripts to facilitate the deployment and management of model inference
infrastructures, such as having reference infrastructure-as-code artifacts.
Û Rapid Model Evolution. The exact versions of the models used in papers reporting empirical

experiments were not always obtainable, some are no longer available or became unreasonably expensive
(to force users to move to newer versions), and many have different knowledge cut-off dates due to
continuous updates to their training data (e.g., OpenAI models). Therefore, we find it important to
prioritize open-weight models in evaluations, and specifically when the evaluation is not about the
model, but about some pipeline on top of it. It is also important to document as much as possible the
model version, knowledge cut-offs, and prompt settings to facilitate future replications. An effort in
providing such a set of recommendations has been proposed by Baltes et al. [18].

Additionally, the model capabilities are becoming more and more advanced, and therefore some
practices become obsolete. For example, using structured output with modern models leads to more
reliable results rather than using YAML formatting. We initially implemented structured output parsing
to mitigate formatting errors and parsing issues. This is true for modern models, such as GPT-4o, but
led to inconsistent results with the models used in the experiment. To ensure a fair comparison with
the original results, a good strategy for future work would be to choose a set of models having similar
capabilities and cut-off date.
ÛMetric Limitations. The standard metric for code generation tasks, pass@k, measures the ability

to generate code that passes predefined test cases. However, it overlooks factors like the number and
complexity of test cases, code quality, efficiency, and overall pipeline cost (e.g., tokens used). This leads
to an unfair comparison between simple baselines and more complex approaches like AlphaCodium. The
same is true when there are differences in terms of capabilities of the model (e.g., GPT-4 vs. Codellama),
token usage (AlphaCodium uses four times more tokens), and inference time, which is crucial in practical
applications.

We suggest considering additional metrics and qualitative analyses in these kinds of evaluations,
such as weighting scores by test case count, measuring average time to solution, or assessing code
quality and efficiency with static analysis tools. Considering problem complexity and test case coverage
is also important, as simple test cases can inflate scores.

6. Threats to validity

In this section, we report the threats to the validity of our study.
Construct Validity. Even if we used most of the code and parameters from the original study, our

modifications could have altered the final results. The obtained results are quantitatively consistent
with those in the original paper. However, we cannot completely rule out since the outputs of LLMs
can be highly variable even with the same inputs and parameters.
Internal Validity.
Although pass@k is widely used as a metric for evaluating code generation models [10], the sample

selected in our experiment could have led to high variance in the results. However, a solid replication
would have required far more computational resources and time. Since our goal was limited to exploring
the replicability of the AlphaCodium approach, we acknowledged this threat when discussing the results.

Another threat concerns the choice of models. We selected models as close as possible to the originals
(i.e., Deepseek-Coder and GPT-3.5-Turbo), adding CodeLlama for comparison. There is also a risk of
knowledge overlap between model training data and the CodeContests dataset, potentially favoring
some models. However, only GPT-3.5-Turbo should be unaffected by this, and its results are comparable
to Deepseek-Coder, suggesting that the model has not been penalized.
External validity.
This threat mostly refers to the applicability of the discussed challenges and takeaways. Despite

they are general suggestions applicable to LLM-based experiments, there could be cases in which some
encountered problems are less prominent. For example, newer models have fewer issues in generating
structured outputs.

7. Conclusion and Future Work

Test-Driven Development (TDD) has been shown to be an effective approach to enhance the performance
of Large Language Models (LLMs) in solving competitive programming problems. In this paper, we
presented a replication study of the work by Ridnik et al. [8], which introduced AlphaCodium, a
TDD-based approach to improve LLMs’ capabilities in this domain.

Our replication study extended the original implementation to support additional LLMs, including
open-source models, and we evaluated their performance on the CodeContests dataset [5]. We obtained
results that were generally consistent with those reported in the original paper and discussed the
challenges and common errors encountered during the replication process.

However, in the process of building the software for the replication, and while running the replication
itself, we also learned several details, which we have presented as observations and takeaways.

We plan to further investigate the applicability of different metrics for a broader and fair evaluation of
LLM-based code generation approaches, as well as extend the evaluation to additional models and newer
datasets. Last but not least, we also plan to release in the future the evaluation tool we are developing
to help the community in replicating and benchmarking LLM-based code generation approaches.

8. Acknowledgements

The study presented in this paper was funded in part by the Advise project, funded by the Spanish AEI
with reference 2024/00416/002.

References

[1] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo, J. M. Zhang, Large language
models for software engineering: Survey and open problems, in: 2023 IEEE/ACM International
Conference on Software Engineering: Future of Software Engineering (ICSE-FoSE), IEEE, 2023, pp.
31–53.

[2] N. Nguyen, S. Nadi, An empirical evaluation of GitHub Copilot’s code suggestions, in: Proceedings
of the 19th International Conference on Mining Software Repositories, 2022, pp. 1–5.

[3] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, R. Sauvestre, T. Remez,
et al., Code Llama: Open foundation models for code, arXiv preprint arXiv:2308.12950 (2023).

[4] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, X. Bi, Y. Wu, Y. Li, et al., DeepSeek-
Coder: When the large language model meets programming–the rise of code intelligence, arXiv
preprint arXiv:2401.14196 (2024).

[5] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gimeno,
A. Dal Lago, et al., Competition-level code generation with AlphaCode, Science 378 (2022)
1092–1097.

[6] S. Piya, A. Sullivan, LLM4TDD: best practices for test driven development using large language
models, in: Proceedings of the 1st International Workshop on Large Language Models for Code,
2024, pp. 14–21.

[7] N. S. Mathews, M. Nagappan, Test-driven development and LLM-based code generation, in:
Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering,
2024, pp. 1583–1594.

[8] T. Ridnik, D. Kredo, I. Friedman, Code generation with AlphaCodium: From prompt engineering
to flow engineering, 2024. arXiv:2401.08500.

[9] CodiumAI, AlphaCodium: Official implementation for the paper "code generation with alpha-
codium", https://github.com/Codium-ai/AlphaCodium, 2024. Accessed: 2025-09-28.

[10] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al., Evaluating large language models trained on code, arXiv preprint
arXiv:2107.03374 (2021).

http://arxiv.org/abs/2401.08500
https://github.com/Codium-ai/AlphaCodium

[11] AlphaCode Team, Google DeepMind, AlphaCode 2 technical report, https://storage.googleapis.
com/deepmind-media/AlphaCode2/AlphaCode2_Tech_Report.pdf, 2023. Accessed: 2025-09-28.

[12] S. Piya, A. Samadi, A. Sullivan, Is more or less automation better? an investigation into the
LLM4TDD process, in: 2025 IEEE/ACM International Workshop on Large Language Models for
Code (LLM4Code), IEEE, 2025, pp. 161–168.

[13] S. Fakhoury, A. Naik, G. Sakkas, S. Chakraborty, S. K. Lahiri, LLM-based test-driven interactive
code generation: User study and empirical evaluation, IEEE Transactions on Software Engineering
(2024).

[14] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry, Q. Le,
et al., Program synthesis with large language models, arXiv preprint arXiv:2108.07732 (2021).

[15] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, Y. Iwasawa, Large language models are zero-shot reasoners,
Advances in neural information processing systems 35 (2022) 22199–22213.

[16] X. Gu, M. Chen, Y. Lin, Y. Hu, H. Zhang, C. Wan, Z. Wei, Y. Xu, J. Wang, On the effectiveness
of large language models in domain-specific code generation, ACM Transactions on Software
Engineering and Methodology 34 (2025) 1–22.

[17] N. Jain, K. Han, A. Gu, W.-D. Li, F. Yan, T. Zhang, S. Wang, A. Solar-Lezama, K. Sen, I. Stoica,
LiveCodeBench: Holistic and contamination free evaluation of large language models for code,
arXiv preprint arXiv:2403.07974 (2024).

[18] S. Baltes, F. Angermeir, C. Arora, M. Muñoz Barón, C. Chen, L. Böhme, F. Calefato, N. Ernst,
D. Falessi, B. Fitzgerald, et al., Guidelines for empirical studies in software engineering involving
large language models, arXiv e-prints (2025) arXiv–2508.

https://storage.googleapis.com/deepmind-media/AlphaCode2/AlphaCode2_Tech_Report.pdf
https://storage.googleapis.com/deepmind-media/AlphaCode2/AlphaCode2_Tech_Report.pdf

