Evaluating Test-Driven Code Generation: A Replication
Study

Giovanni Rosa*, Jesus M. Gonzalez-Barahona*

SoftDev group, Universidad Rey Juan Carlos, Spain

Abstract
The software engineering community is exploring ways of integrating Large Language Models (LLMs) into soft-
ware developing processes. One of such explorations is the use of techniques based on Test-Driven Development
(TDD), which presents significant challenges due to model variability, evolving APIs, and computational resource
demands. In this case, the interest is usually not in showing how well a model behaves, but how a technique may
improve the results of the LLM in certain scenarios.

This paper presents a replication study of one of those explorations: AlphaCodium, an approach implementing
a TDD-based workflow for producing code with LLMs, evaluated by solving competitive programming problems
from the CodeContests dataset. The primary goal of our study is not the replication itself, but to understand how
to empirically evaluate LLM-based code generation approaches, and the challenges involved in replicating such
experiments. However, our replication also aims to add more evidence about the effectiveness of the approach.

We extended the original open-source AlphaCodium implementation to support some open-weights models,
replicating the evaluation on the same dataset. In the process, we collected some supplementary inference metrics
such as latency and token usage.

By discussing the outcome and challenges encountered, we offer a set of actionable takeaways that can help
future replication studies of multi-step approaches for LLM-based code generation.

Keywords
code generation, TDD, LLM, replication study, performance evaluation, software engineering

1. Introduction

Large Language Models (LLMs) have shown remarkable capabilities in various natural language pro-
cessing tasks, and have been widely adopted in the software engineering domain [1]. Starting from
code assistants to help developers write, debug, and refactor code [2], the development of code-specific
LLMs has been a major focus in recent years [3, 4]. LLMs have been employed to tackle competitive
programming problems, where the models are measured by their capability of generating code following
specific functional requirements and passing a set of test cases. An important mention is AlphaCode [5],
developed by Google DeepMind, which demonstrated effective in that purpose.

The software engineering community is exploring ways of integrating LLMs into software develop-
ment processes, with different purposes: to produce better code, to collaborate in software maintenance
tasks such as bug fixing, or to improve how they take into account contextual information. One of these
explorations deals with the use of Test Driven Development (TDD) [6, 7] to improve code generation.
The general idea in this realm is to make LLMs iteratively generate and refine code based on a provided
set of test cases, which are expected to guide the model towards producing correct and robust imple-
mentations, given a specification. These approaches are usually evaluated by trying the approach to
solve coding problems for which tests can be found.

However, evaluating and replicating any kind of experiment involving LLMs can be challenging
due to the rapid evolution of the models, the inherent variability in LLM outputs, which can lead to
inconsistent results across different runs, and the fair evaluation of the approaches relying on LLMs,
which can be difficult due to the high costs associated with using proprietary models and the complexity

Benevol’25: 24th Belgium-Netherlands Software Evolution Workshop 17—-18 November 2025, Enschede, The Netherlands
*Corresponding authors.
Q giovanni.rosa@urjc.es (G. Rosa); jesus.gonzalez.barahona@urjc.es (J. M. Gonzalez-Barahona)

&} https://giovannirosa.com (G. Rosa); https://gsyc.urjc.es/jgh/ (J. M. Gonzalez-Barahona)
@ 0000-0002-5241-1608 (G. Rosa); 0000-0001-9682-460X (J. M. Gonzalez-Barahona)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
B

mailto:giovanni.rosa@urjc.es
mailto:jesus.gonzalez.barahona@urjc.es
https://giovannirosa.com
https://gsyc.urjc.es/jgb/
https://orcid.org/0000-0002-5241-1608
https://orcid.org/0000-0001-9682-460X
https://creativecommons.org/licenses/by/4.0/deed.en

of setting up open-source models. This is even more challenging when the aim is not to evaluate the
model itself, but how a given technique (i.e., derivative of TDD) may improve the performance of LLMs.

In this paper, we present a replication study designed to understand how to empirically evaluate LLM-
based code generation approaches, and the challenges involved in replicating such experiments. To this
aim, we replicate the study of Ridnik et al. [8] which introduced AlphaCodium, a TDD-based approach for
enhancing the effectiveness of LLMs in code generation. The approach involves a robust pre-processing
phase, including problem reflection and test case augmentation, which extends similar approaches in the
literature [6, 7], and most importantly, the source code is publicly available on GitHub [9], facilitating
the replication process. We evaluate the approach on the CodeContests dataset [5], composed of coding
problems, which is the same used by the original study, demonstrating significant improvements over a
simple direct code generation method.

Note that in this kind of evaluation, the focus is not on the capabilities of the LLMs themselves,
but rather how certain techniques, usually related to software engineering practices, can be used to
improve results in certain tasks. Given this situation, our goal is to understand the challenges related to
the replication and evaluation of the complex workflow implemented in AlphaCodium, rather than the
performance of the LLMs themselves.

The authors of the original study provided an open-source implementation of AlphaCodium, which
we used as a starting point for our study. We leveraged this implementation by extending and modifying
it to support additional LLMs, such as open-weights models, and to extend the evaluation parameters.
Using our tool, we could replicate the original study with other LLMs, and report on some other
performance-related parameters not considered in it, such as latency and token usage. We report the
results of our replication study and provide some insights into the challenges and common errors that
arose during the replication process, along with a set of takeaways for future replication studies.

The rest of the paper is organized as follows. Section 2 presents the related work. Section 3 describes
the experimental protocol of the replication study. We present the results in Section 4, while in Section 5
we discuss what we learned during the replication process. Finally, in Section 6 we report the threats of
validity for the study and Section 7 concludes the paper.

2. Related Work

Large Language Models (LLMs) have been used extensively in code-related tasks, such as code com-
pletion and code generation. A seminal study in this field introduced the Codex models and evaluated
them on competitive programming problems [10]. They introduced the passe@k metric, which is now
widely used to evaluate code generation models. Several studies have conducted similar experiments to
produce models and approaches specialized in solving coding problems. For example, Google Deepmind
introduced AlphaCode [5], improved in AlphaCode 2 [11], which is able to reach a competitive level in
programming competitions.

Exploring ways of combining LLMs with software engineering practices aimed at improving code
quality, several studies investigated the usage of LLMs to solve coding problems with the aid of Test
Driven Development (TDD) practices. Piya et al. [6, 12] investigated the impact of TDD practices on the
performance of LLMs in solving LeetCode problems, showing that TDD can significantly improve the
performance of LLMs in solving coding problems. Fakhoury et al. [13] introduced TICODER, a workflow
for test-driven, interactive code generation. TICODER automatically generates tests and code candidates
from user requirements, allowing iterative refinement through user feedback. Their evaluation, using
both user studies and benchmark datasets such as MBPP [14] and HumanEval [10], demonstrates that
test cases can effectively enhance code quality. Similarly, Mathews et al. 7] proposed TGen, which
applies TDD principles to LLM-based code generation. Starting from input test cases, TGen generates
code and iteratively remediates it based on failed test outputs until all tests pass. Experiments on MBPP
and HumanEval show that TDD-based workflows significantly improve the correctness and robustness
of LLM-generated code.

AlphaCodium [8] proposes a similar technique, introducing a robust pre-processing phase including a

problem reflection step and a test cases augmentation procedure. The authors evaluated their approach
on the CodeContests dataset, showing that it significantly improves the performance of LLMs in solving
competitive programming problems. We selected AlphaCodium as the replication target for our study,
leveraging the open implementation provided by its authors [9]. We describe it more in detail in
Section 3.1.

3. Replication Study Design

We report a replication study of the paper of Ridnik et al. [8], with the goal of understanding how
to evaluate approaches built upon LLMs and the challenges faced when dealing with LLM-based
experiments designed not to evaluate the models themselves, but relatively complex pipelines using
them.

Our replication study is performed to answer the following research question:

RQ: To what extent are we able to replicate the empirical evaluation of the AlphaCodium approach?

We aim to replicate the results of the original paper as closely as possible, focusing on how to evaluate
approaches built upon LLMs and the related challenges when dealing with LLM-based experiments.

3.1. The AlphaCodium Approach

The approach presented in the original study we replicate, called AlphaCodium, is based on the idea
that generating code in multiple steps, with intermediate verification and refinement, can lead to better
results than a single-step generation. The overall approach is shown in Fig. 1, and can be summarized
as follows: Taking as input a coding problem description (specification) and the test cases to verify
the solution, AlphaCodium (i) generates a possible resolution procedure (i.e., list of steps to solve the
problem), (ii) generates a set of possible solutions and selects the best one, (iii) generates additional
test cases, and (iv) executes a code generation loop running the test cases and fixing the function
implementation. For additional details on the approach, we refer the reader to the original paper [8].
The original study conducted an empirical evaluation of the approach using different LLMs, including
open-weights models (DeepSeek) and closed ones, like OpenAl's GPT-3.5 and GPT-4. The baseline is
composed of a single-step code generation using the same models, using the Zero-shot prompting
technique [15], which is basically the simplest way of prompting an LLM to generate code from a
specification. Therefore, this is a good example of an evaluation not aimed at evaluating the models
themselves, but how they can be improved by using some specific technique. Moreover, the original
study compared the results with AlphaCode [5], a state-of-the-art approach for code generation based on

Pre.processing Code iterations
. e
;:‘S;,ul;;n Generate Rank Iterate on Iterate on Al
: | > -
Description + Possible Solutions . | Public Tests Tests :
- Solutions £ S
Public Tests i H
Problem Public Tests Generate Initial Code | Final
© y Additional Al . : :
Reflection Reasoning Te Solution c Solution
ests H
A :

Figure 1: The AlphaCodium approach proposed by [8].

LLMs. We selected AlphaCodium because we were interested in existing approaches for code generation
based on an iterative workflow, combined with TDD, and also because the source code of the tool is
publicly available [9].

3.2. Study Context

The context of the original study consists of the CodeContests dataset [5], a set of coding problems
extracted from several programming platforms, such as Codeforces' and Codechef*. Each instance of
the dataset contains the data to train and evaluate code generation models, including: (i) the problem
description, (ii) the function signature, (iii) the public and private test cases, and the (iv) solution code.
The full list of fields is summarized on the dataset card®.

We started with the exact same dataset used in the original paper, publicly available on HuggingFace *.
While the dataset is composed of training, validation, and test splits, we only use the validation and test
splits, as did the AlphaCodium paper, for a total of 117 and 165 instances, respectively. They discarded
a total of 12 instances from the test set, resulting in a total of 156 instances, and 9 instances from the
validation set, resulting in a total of 105 instances. We investigated the reason behind this, and we
found in the code that if less than 20% of the solutions provided in the dataset are correct, the problem
is marked as invalid, and then skipped by the tool. Approximately, the knowledge cut-off date for the
problems contained in the dataset is around 2021.

3.3. Experimental Procedure

In this section, we describe the experimental procedure we followed to replicate the results of the
AlphaCodium approach, describing the differences with the original experiment.

3.3.1. Tool implementation

The AlphaCodium tool is implemented in Python and is publicly available on GitHub [9], which served
as our starting point for the code used for replicating the experiment. One of the main differences in
our replication is the supported LLMs. While the original paper uses OpenAl and DeepSeek models, we
extended the tool to support open-weights models deployed via vLLM® and models accessible through
OpenRouter APIs®. We chose vLLM because it allows deploying HuggingFace models with production-
ready performance and improved reliability, compared to alternatives like Ollama’. OpenRouter was
selected for the wide availability of model providers, including OpenAI and Anthropic, and a unified
pay-per-use APIL

Moreover, we made several improvements and fixes to enhance the tool’s reliability and robustness.
These include better output parsing (handling corner cases), improved exception handling, extended
logging (e.g., token usage and latency), and the support for additional configuration parameters. An
example is the option to run a single problem instance or a subset of instances, which facilitates
debugging and targeted re-execution in case of failures or interruptions. Also, the problem iterations
are configured to stop once a valid solution was found. We modified this behavior to always perform
the maximum number of iterations, to obtain a complete set of results of the approach effectiveness.

We implemented the storage of intermediate results for each iteration. This allows us to resume
the execution from the last completed iteration after interruptions. Also, we set an empty result entry
for the cases where the model fails to generate a solution or the generated solution does not pass
all the test cases within the maximum number of iterations. This because by default the tool will

'https://codeforces.com/

*https://www.codechef.com/
*https://huggingface.co/datasets/deepmind/code_contests
*https://huggingface.co/datasets/talrid/CodeContests_valid_and_test_AlphaCodium
*https://docs.vllm.ai

Shttps://openrouter.ai/

"https://ollama.com

https://codeforces.com/
https://www.codechef.com/
https://huggingface.co/datasets/deepmind/code_contests
https://huggingface.co/datasets/talrid/CodeContests_valid_and_test_AlphaCodium
https://docs.vllm.ai
https://openrouter.ai/
https://ollama.com

re-execute these iterations. These changes allowed us to parallelize the execution, significantly speeding
up the experiments since each problem instance is independent. We can conclude that we made mostly
engineering improvements while preserving as much as possible the original behavior of the tool.

3.3.2. Experimental parameters

The models used for our replication are the following:

« openai/gpt-3.5-turbo via OpenRouter APIs®: Since gpt-3.5 is not available on OpenRouter, we
opted for the turbo version. The knowledge cut-off is reported as September 2021.

« deepseek-ai/deepseek-coder-33b-instruct’ [4] via vLLM: The original paper only reports deepseek-
coder-33b as the model. We opted for the instruct version, better suited for instruction-following
tasks. The knowledge cut-off is not explicitly reported, but the model was released in November
2023, so we can assume the knowledge cut-off is a few months prior to that date.

« codellama/CodeLlama-34b-Instruct-hf'° [3] via vLLM: Created from Meta’s Llama 2 family of
models, it is an open-weights model widely used for code generation tasks [16]. The model has
been trained between January and July 2023.

Given the cut-off date of the evaluation dataset, we can assess on the likelihood of contamination:
that the models had access to the dataset, including solutions, as a part of their training set. The versions
of Deepseek and CodeLlama which we use may have contamination, but GPT-3.5-Turbo should not
have it according to the reported knowledge cut-off date. In any case, we do not know how much the
contamination may affect the results.

We used the same execution parameters provided in the open source implementation of the tool
(i.e., TOML configuration file''). We made some modifications, mostly by adding new parameters, while
trying to keep them as close as possible to the original ones. Specifically, we kept the same model
temperature, which depends on the individual prompt and varies between 0.2 and 0.3. We set the
parameter for maximum number of iterations to 5. An iteration corresponds to a single attempt to
solve the problem and thus, we need a total of five attempts for each problem to compute the passe5
metric. We kept the original parameters for the number of possible solutions generated during the
pre-processing step (i.e., 3), the total attempts to generate the initial code solution for the TDD loop
(i.e., 8). Also, we kept the total number of feedback iterations in the TDD loop set to 3, meaning that
the model has three chances to fix the code based on the failed test cases. Please refer to the original
configuration file for the complete list of available parameters.

We changed the execution timeout: While the original tool used a timeout of 90 seconds for inference
calls, we increased this to 600 seconds to help with the higher latency of open-weights models. This
value is the default for the OpenAI Python SDK. We used the use_baseline flag as a parameter to
switch between the AlphaCodium approach and the single-step code generation baseline, resulting in
two different resolution procedures for the experiment.

3.3.3. Evaluation metrics

The original paper uses the passek metric [10], the reference measure for code generation tasks. The
metric is computed as follows: Given a set of n generated solutions samples for a problem, for up
to k attempts, the passek metric measures the probability that at least one of the n samples passes
all the test cases. As stated in Section 5.3 of the original paper, "[...] we perform 15-20 LLM calls per
solution, so a pass@5 submission involves 100 LLM calls". Therefore, we assume that they generated
5 solutions for each problem. Then, we computed the pass@5 metric'” using 5 samples per problem

$https://openrouter.ai/models/gpt-3.5-turbo
*https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
"https://huggingface.co/codellama/Codellama-34b-instruct
"https://github.com/Codium-ai/AlphaCodium/blob/main/alpha_codium/settings/configuration.toml
”By definition, computing passek requires at least n > k samples per task.

https://openrouter.ai/models/gpt-3.5-turbo
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
https://huggingface.co/codellama/Codellama-34b-instruct

Figure 2: Example of the command used to deploy DeepSeek-Coder via vLLM.

vilm serve deepseek-ai/deepseek-coder-33b-instruct \
--host 0.0.0.0 --port 8000 \
--gpu-memory-utilization 0.95 \

--max-model-len 53700 \

-—trust -remote -code \

-—tensor-parallel -size 2

(n = 5). Each instance of the dataset, along with public and private test cases, contains an additional
set of generated test cases, created based on the existing public and private ones. We computed the
metric using both sets, as in the original paper, and also report the results using only the private test
cases to provide an alternative evaluation perspective that is closer to a real-world scenario for coding
challenges. Additionally, we report the collected statistics for each inference call as latency (i.e., time
taken to get the response from the model), token usage (i.e., total and completion tokens). We report
the average values computed for a single iteration, along with the total number of calls to the model.

3.3.4. Execution environment

We deployed the open-weights models on a multi-GPU shared server with a total of 4 A100 GPUs
(80 GB), an AMD EPYC 7313 16-Core and 256 GB of RAM. This allowed us to execute full precision
models, without the need for quantization, which could influence the performance of the models. For
the experiments using the OpenRouter APIs, we used a standard laptop machine with an Intel i7-12700H
CPU and 64 GB of RAM. To ensure a clean and isolated execution environment, we ran the tool inside a
dedicated Docker container. This enhances reproducibility of the execution environment and minimizes
any potential security risks associated with unexpected behavior of the generated code. The tool also
incorporates a sandboxing mechanisms limiting memory and potentially dangerous commands (e.g., rm).
The vLLM instance has been deployed inside a separate Docker container on the same server, using two
of the four GPUs with tensor parallelism. We then configured the AlphaCodium tool to interact with it
via REST APIs. Although the GPUs have sufficient memory to load the models, for DeepSeek-Coder we
needed to limit the maximum context length of the model. This did not affect our experiments, since
the prompts are much smaller than this limit. In Fig. 2 we provide an example of the command used to
deploy the model.

4. Replication Study Results

Table 1 presents the passek scores from our replication study, using £ = 5 and n = 5 samples per
problem instance. We compare these results with those reported in the original paper [8]. The outcomes
are comparable and generally consistent with the original scores.

For the baseline approach, our pass rates are slightly higher, while for AlphaCodium the results are
similar. This difference may be attributed to the high variance in results due to the limited number of
samples per problem instance, particularly for the baseline, which relies on a single call to the LLM.

CodeLlama remains the worst performing model, but its results are still consistent with the original
study, where the AlphaCodium approach outperforms direct solving. We do not have a direct comparison
for GPT-4, the best-performing model in the original paper. However, given the release dates and
knowledge cut-offs, it is reasonable to assume that it is more capable than the other models, likely
benefiting from newer data, training procedures, and having portions of its training data overlapping
with the CodeContests dataset.

Table 2 shows the results obtained by measuring the pass@5 score only on the private test set. We
can conclude that having fewer test cases makes the overall score higher, assuming that it is easier to

Table 1
Summary of the results for the pass@5 score evaluated on validation and test splits. The symbol { indicates
those from the original paper [8].

Model Validation Set (pass@5) Test Set (pass@5)
Zero-Shot AlphaCodium Zero-Shot AlphaCodium
DeepSeek-33BT 7% 20% 12% 24%
GPT-3.51 15% 25% 8% 17%
GPT-4 19% 44% 12% 29%
deepseek-ai/deepseek-coder-33b-instruct 10% 18% 14% 21%
openai/gpt-3.5-turbo 1% 22% 10% 21%
codellama/Codellama-34b-Instruct-hf 2% 5% 4% 8%
Table 2
Summary of the results for the pass@5 score evaluated only on the problems’ private test set.
Model Validation Set (pass@5) Test Set (pass@5)
Zero-Shot AlphaCodium Zero-Shot AlphaCodium
deepseek-ai/deepseek-coder-33b-instruct 20% 27% 22% 23%
openai/gpt-3.5-turbo 19% 27% 13% 19%
codellama/Codellama-34b-Instruct-hf 6% 9% 10% 5%
Avg. Latency (s) Avg. Total Tokens Avg. Completion Tokens Avg. Num Requests
4] 2000 2089.5 2125.3 w00 515.6 527.1 30 28.2
2 1500 + 400 201 = l
2 101 300
E 1000 200 1o
; 51 500 4 100
0- 0- 0-
= 2102.5 30
. 2000 4 2049.5 - . 27.8 .
E 154 1500 - 20
ﬁ 10 1000 1
= 10 4
51 500
0+ 04
mep‘:eek'mdercod"-'“\ama ‘3\11—35’1‘@9 De-apsee\"c"dE(codeL‘ama 691—3-51\““‘) De&psee\"@dﬂcodeuama G\?T—i-"m‘ba m&psee\"@wcode'“‘ama ,3\11-35’1“(“0

[Baseline mmm AlphaCodeium

Figure 3: Summary of the inference statistics collected for the experiments running AlphaCodium.

produce a solution that passes all the tests. However, the relative performance of the models remains
the same, with AlphaCodium achieving better results than the baseline approach.

Fig. 3 shows the statistics collected during the model inference. The values represent the average value
for a complete execution of a single instance (single iteration). The latency of GPT-3.5-turbo is lower
than the other models, because of OpenRouter. A fairer comparison is between DeepSeek-Coder-33B and
CodeLlama-34B, both deployed on the same hardware, where we can see that the former is much slower
than the latter, probably due to the complexity of the model. In terms of token usage, GPT-3.5-turbo is
more efficient despite performing similarly to DeepSeek-Coder-33B in terms of number of requests and
achieved pass rate. Additionally, the total token usage for AlphaCodium is significantly higher than
for the baseline approach, as expected, since it makes multiple requests to the LLM for each problem
instance. For a fairer comparison, it would be better to consider the overall cost of each approach, or to
allocate the same token budget to both methods and compare their results accordingly.

5. Challenges and Lessons Learned

Replicating and evaluating the experiments proved to be challenging, specifically when dealing with
large language models (LLMs) that evolve rapidly. Below, we outline the issues we encountered, our
mitigations, and lessons learned.

Flaky formatting errors. The non-determinism of the execution of the models led to flaky errors
related to formatting in the generated YAML output. Actually, the prompt requests to generate a
YAML-formatted output with the required fields (e.g., test cases, resolution procedure, etc.). However,
some models struggled to adhere strictly to this format, leading to parsing errors when the output is
processed by a YAML parser. We chose to not force the parsing of that output, considering those cases
as invalid responses from the model.

Token generation loop. In our replication, we worked with LLMs that are older and less capable
than current ones. A recurrent issue, especially with deepseek-coder-33b-instruct, is that the
model sometimes enters a token generation loop, repeatedly generating the same or random tokens
without making progress toward a valid response. In those cases, the inference exceeds the timeout and
the generation stops. Identifying these cases is not trivial. One strategy could be to use streaming output
and monitor the generated tokens, although that would make the code more complex. Fortunately, we
observed that the average latency for normal responses is much lower than for these generation loops
(see Fig. 3). Thus, a simple and effective mitigation is to use an anomaly detection heuristic based on a
threshold on average latency to identify these cases, and rerun the inference.

Unable to execute the generated code. Another issue is that, in several cases, the generated code
cannot be executed either due to syntax errors or missing dependencies. Even if the AlphaCodium
pipeline includes an iteration phase with a code-fixing loop, we found that some models struggle to
generate syntactically correct code, leading to execution failures. Examples are invalid code indentation,
error while parsing the input of test cases, recalls to missing functions or files, accessing invalid list
ranges or invalid type comparison (e.g., string with integer). Other frequent errors come from the
presence of explanations inside the code block that the model provided, leading to execution errors. In
a few cases, the execution silently fails with no output or errors. We concluded that the code is not
executable, and we count these cases as failures.

5.1. Takeaways

In the following, we summarize some lessons learned and challenges faced during the replication study.

Q Reliable Evaluation Tools. We aimed to replicate the evaluation pipeline of the target paper as
closely as possible, extending the provided codebase to support different models and infrastructures. Our
goal was to focus on having a very reliable tool, allowing to re-run individual problem instances without
restarting the entire process. We found it fundamental to have a reliable and well-tested evaluation
tool, or at least, to have a starting basis to build upon. We encourage the research community to share
their evaluation tools and pipelines to facilitate replication and comparison of results. A strategy could
be to reuse and extend existing benchmarks such as LiveCodeBench [17], or consider adopting libraries
like HuggingFace’s evaluate'®.

Q Fast and reliable inference infrastructure. A significant amount of effort was devoted to
setting up an inference infrastructure capable of running large models efficiently. We initially opted for
Ollama, a popular and easy-to-use model serving tool. However, we found that its model compression
format is not well suited for multi-GPU settings and complicates replication. We switched to vLLM
to avoid provider-specific artifacts and ensure that our results could be replicated by others by using
standard tools and the open-weights models offered by Hugging Face.

We deployed a single vLLM instance with tensor parallelism across our multi-GPU server, leading to
a better load balancing and faster inference times compared to a single instance per GPU. Setting up
such an environment is non-trivial and requires significant technical expertise. A useful contribution is

Bhttps://github.com/huggingface/evaluate

https://github.com/huggingface/evaluate

to have a set of guidelines and scripts to facilitate the deployment and management of model inference
infrastructures, such as having reference infrastructure-as-code artifacts.

Q Rapid Model Evolution. The exact versions of the models used in papers reporting empirical
experiments were not always obtainable, some are no longer available or became unreasonably expensive
(to force users to move to newer versions), and many have different knowledge cut-off dates due to
continuous updates to their training data (e.g., OpenAl models). Therefore, we find it important to
prioritize open-weight models in evaluations, and specifically when the evaluation is not about the
model, but about some pipeline on top of it. It is also important to document as much as possible the
model version, knowledge cut-offs, and prompt settings to facilitate future replications. An effort in
providing such a set of recommendations has been proposed by Baltes et al. [18].

Additionally, the model capabilities are becoming more and more advanced, and therefore some
practices become obsolete. For example, using structured output with modern models leads to more
reliable results rather than using YAML formatting. We initially implemented structured output parsing
to mitigate formatting errors and parsing issues. This is true for modern models, such as GPT-4o, but
led to inconsistent results with the models used in the experiment. To ensure a fair comparison with
the original results, a good strategy for future work would be to choose a set of models having similar
capabilities and cut-off date.

Q, Metric Limitations. The standard metric for code generation tasks, passek, measures the ability
to generate code that passes predefined test cases. However, it overlooks factors like the number and
complexity of test cases, code quality, efficiency, and overall pipeline cost (e.g., tokens used). This leads
to an unfair comparison between simple baselines and more complex approaches like AlphaCodium. The
same is true when there are differences in terms of capabilities of the model (e.g., GPT-4 vs. Codellama),
token usage (AlphaCodium uses four times more tokens), and inference time, which is crucial in practical
applications.

We suggest considering additional metrics and qualitative analyses in these kinds of evaluations,
such as weighting scores by test case count, measuring average time to solution, or assessing code
quality and efficiency with static analysis tools. Considering problem complexity and test case coverage
is also important, as simple test cases can inflate scores.

6. Threats to validity

In this section, we report the threats to the validity of our study.

Construct Validity. Even if we used most of the code and parameters from the original study, our
modifications could have altered the final results. The obtained results are quantitatively consistent
with those in the original paper. However, we cannot completely rule out since the outputs of LLMs
can be highly variable even with the same inputs and parameters.

Internal Validity.

Although passek is widely used as a metric for evaluating code generation models [10], the sample
selected in our experiment could have led to high variance in the results. However, a solid replication
would have required far more computational resources and time. Since our goal was limited to exploring
the replicability of the AlphaCodium approach, we acknowledged this threat when discussing the results.

Another threat concerns the choice of models. We selected models as close as possible to the originals
(i.e., Deepseek-Coder and GPT-3.5-Turbo), adding CodeLlama for comparison. There is also a risk of
knowledge overlap between model training data and the CodeContests dataset, potentially favoring
some models. However, only GPT-3.5-Turbo should be unaffected by this, and its results are comparable
to Deepseek-Coder, suggesting that the model has not been penalized.

External validity.

This threat mostly refers to the applicability of the discussed challenges and takeaways. Despite
they are general suggestions applicable to LLM-based experiments, there could be cases in which some
encountered problems are less prominent. For example, newer models have fewer issues in generating
structured outputs.

7. Conclusion and Future Work

Test-Driven Development (TDD) has been shown to be an effective approach to enhance the performance
of Large Language Models (LLMs) in solving competitive programming problems. In this paper, we
presented a replication study of the work by Ridnik et al. [8], which introduced AlphaCodium, a
TDD-based approach to improve LLMs’ capabilities in this domain.

Our replication study extended the original implementation to support additional LLMs, including
open-source models, and we evaluated their performance on the CodeContests dataset [5]. We obtained
results that were generally consistent with those reported in the original paper and discussed the
challenges and common errors encountered during the replication process.

However, in the process of building the software for the replication, and while running the replication
itself, we also learned several details, which we have presented as observations and takeaways.

We plan to further investigate the applicability of different metrics for a broader and fair evaluation of
LLM-based code generation approaches, as well as extend the evaluation to additional models and newer
datasets. Last but not least, we also plan to release in the future the evaluation tool we are developing
to help the community in replicating and benchmarking LLM-based code generation approaches.

8. Acknowledgements

The study presented in this paper was funded in part by the Advise project, funded by the Spanish AEI
with reference 2024/00416/002.

References

[1] A.Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo, J. M. Zhang, Large language
models for software engineering: Survey and open problems, in: 2023 IEEE/ACM International
Conference on Software Engineering: Future of Software Engineering (ICSE-FoSE), IEEE, 2023, pp.
31-53.

[2] N.Nguyen, S. Nadi, An empirical evaluation of GitHub Copilot’s code suggestions, in: Proceedings
of the 19th International Conference on Mining Software Repositories, 2022, pp. 1-5.

[3] B.Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, R. Sauvestre, T. Remez,
et al., Code Llama: Open foundation models for code, arXiv preprint arXiv:2308.12950 (2023).

[4] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, X. Bi, Y. Wu, Y. Li, et al,, DeepSeek-
Coder: When the large language model meets programming-the rise of code intelligence, arXiv
preprint arXiv:2401.14196 (2024).

(5] Y.Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gimeno,
A. Dal Lago, et al., Competition-level code generation with AlphaCode, Science 378 (2022)
1092-1097.

[6] S.Piya, A. Sullivan, LLM4TDD: best practices for test driven development using large language
models, in: Proceedings of the 1st International Workshop on Large Language Models for Code,
2024, pp. 14-21.

[7] N. S. Mathews, M. Nagappan, Test-driven development and LLM-based code generation, in:
Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering,
2024, pp. 1583-1594.

[8] T. Ridnik, D. Kredo, I. Friedman, Code generation with AlphaCodium: From prompt engineering
to flow engineering, 2024. arXiv:2401.08500.

[9] CodiumAl, AlphaCodium: Official implementation for the paper "code generation with alpha-
codium", https://github.com/Codium-ai/AlphaCodium, 2024. Accessed: 2025-09-28.

[10] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al., Evaluating large language models trained on code, arXiv preprint
arXiv:2107.03374 (2021).

http://arxiv.org/abs/2401.08500
https://github.com/Codium-ai/AlphaCodium

[11]
[12]

[13]

[14]
[15]

[16]

AlphaCode Team, Google DeepMind, AlphaCode 2 technical report, https://storage.googleapis.
com/deepmind-media/AlphaCode2/AlphaCode2_Tech_Report.pdf, 2023. Accessed: 2025-09-28.
S. Piya, A. Samadi, A. Sullivan, Is more or less automation better? an investigation into the
LLM4TDD process, in: 2025 IEEE/ACM International Workshop on Large Language Models for
Code (LLM4Code), IEEE, 2025, pp. 161-168.

S. Fakhoury, A. Naik, G. Sakkas, S. Chakraborty, S. K. Lahiri, LLM-based test-driven interactive
code generation: User study and empirical evaluation, IEEE Transactions on Software Engineering
(2024).

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry, Q. Le,
et al., Program synthesis with large language models, arXiv preprint arXiv:2108.07732 (2021).

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, Y. Iwasawa, Large language models are zero-shot reasoners,
Advances in neural information processing systems 35 (2022) 22199-22213.

X. Gu, M. Chen, Y. Lin, Y. Hu, H. Zhang, C. Wan, Z. Wei, Y. Xu, J. Wang, On the effectiveness
of large language models in domain-specific code generation, ACM Transactions on Software
Engineering and Methodology 34 (2025) 1-22.

N. Jain, K. Han, A. Gu, W.-D. Li, F. Yan, T. Zhang, S. Wang, A. Solar-Lezama, K. Sen, 1. Stoica,
LiveCodeBench: Holistic and contamination free evaluation of large language models for code,
arXiv preprint arXiv:2403.07974 (2024).

S. Baltes, F. Angermeir, C. Arora, M. Mufioz Bardn, C. Chen, L. Bohme, F. Calefato, N. Ernst,
D. Falessi, B. Fitzgerald, et al., Guidelines for empirical studies in software engineering involving
large language models, arXiv e-prints (2025) arXiv-2508.

https://storage.googleapis.com/deepmind-media/AlphaCode2/AlphaCode2_Tech_Report.pdf
https://storage.googleapis.com/deepmind-media/AlphaCode2/AlphaCode2_Tech_Report.pdf

	1 Introduction
	2 Related Work
	3 Replication Study Design
	3.1 The AlphaCodium Approach
	3.2 Study Context
	3.3 Experimental Procedure
	3.3.1 Tool implementation
	3.3.2 Experimental parameters
	3.3.3 Evaluation metrics
	3.3.4 Execution environment

	4 Replication Study Results
	5 Challenges and Lessons Learned
	5.1 Takeaways

	6 Threats to validity
	7 Conclusion and Future Work
	8 Acknowledgements

