
FlaDaGe: A Framework for Generation of Synthetic Data
to Compare Flakiness Scores
Mert Ege Can1, Joanna Kisaakye1,2, Mutlu Beyazıt1,2 and Serge Demeyer1,2

1Universiteit Antwerpen, Belgium
2Flanders Make vzw, Belgium

Abstract
Several industrial experience reports indicate that modern build pipelines suffer from flaky tests: tests with

non-deterministic results which disrupt the CI workflow. One way to mitigate this problem is by introducing a
flakiness score, a numerical value calculated from previous test runs indicating the non-deterministic behaviour
of a given test case over time. Different flakiness scores have been proposed in the white and grey literature;
each has been evaluated against datasets that are not publicly accessible. As such, it is impossible to compare the
different flakiness scores and their behavior under different scenarios. To alleviate this problem, we propose a
parameterized artificial dataset generation framework (FlaDaGe), which is tunable for different situations, and
show how it can be used to compare the performance of two separate scoring formulae.

Keywords
Flakiness, Flakiness scores, Continuous Integration, Automation

1. Introduction

Software testing is a vital necessity for modern software engineering, ensuring system reliability, quality,
and developer productivity in environments of increasing complexity [1, 2]. In continuous integration
(CI) pipelines, automated test suites are executed to validate software works as intended before every
deployment. However, these pipelines face a critical challenge: flaky tests [3, 4].

Flaky tests are tests with non-deterministic outcomes, switching between different results under
identical conditions. This behavior reduces trust in the test results, wastes engineering efforts, and
disrupts CI workflows [5, 6]. Large-scale industrial studies within firms such as Google, SAP and
Microsoft show that flakiness continues to appear across projects and progressively worsens over time,
causing significant costs in debugging and pipeline stability [7, 8].

Despite the increasing attention to flaky tests from the research community, there is still one principal
challenge test engineers must grapple with, pertaining to the selection of a mitigation strategy. Before
a mitigation strategy may be selected, the magnitude of the flakiness problem must be assessed.
This is achieved through the use of flakiness scores and several scores exist in the white and grey
literature [9, 10, 11, 12, 13, 14, 15]. However, most of the scores presented in the literature are evaluated
against a dataset that is not accessible to the public. Indeed, at the time of this writing, there is no
benchmark dataset against which multiple flakiness scoring techniques can be assessed.

This lack of standardized assessment frameworks allowing for a direct comparison of different flaki-
ness scoring algorithms makes it harder to understand the strengths and weaknesses of the algorithms.
Existing approaches are often evaluated in isolated configurations with unique use cases, making it
difficult to establish a common baseline between algorithms. Moreover, a number of current research
reports are based on datasets derived from real-world systems or undisclosed industrial case studies,
which are individually valuable but do not always provide controlled conditions for systematic evalua-

The 24th Belgium-Netherlands Software Evolution Workshop (BENEVOL 2025)
$ m.egecan@gmail.com (Mert Ege Can); joanna.kisaakye@uantwerpen.be (Joanna Kisaakye);
mutlu.beyazit@uantwerpen.be (Mutlu Beyazıt); serge.demeyer@uantwerpen.be (Serge Demeyer)
� 0009-0006-2595-0311 (Mert Ege Can); 0000-0001-7081-5385 (Joanna Kisaakye); 0000-0003-2714-8155 (Mutlu Beyazıt);
0000-0002-4463-2945 (Serge Demeyer)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:m.egecan@gmail.com
mailto:joanna.kisaakye@uantwerpen.be
mailto:mutlu.beyazit@uantwerpen.be
mailto:serge.demeyer@uantwerpen.be
https://orcid.org/0009-0006-2595-0311
https://orcid.org/0000-0001-7081-5385
https://orcid.org/0000-0003-2714-8155
https://orcid.org/0000-0002-4463-2945
https://creativecommons.org/licenses/by/4.0/deed.en

tion. This gap hinders the ability to fairly assess the performance of competing algorithms in varying
flakiness scenarios.

To address these challenges, this research introduces a configurable dataset generation framework
(FlaDaGe) designed to simulate test suite behaviors with controllable flakiness trends. The framework is
algorithm-neutral, which means that it is not biased towards any algorithm and allows for the systematic
creation of artificial datasets with varying flakiness patterns. Finally, we demonstrate how it can be
used to create a simulated dataset to compare two flakiness scoring algorithms; the No-Fault-Found
(NFF) rate [11] and the Extended Flakiness Score (EFS) [12].

2. Flakiness Scores

Although re-running, monitoring, and fixing provide combined response strategies to flakiness, they
all benefit from a unified quantification to rank which tests are most in need of attention. Flakiness
scoring serves this purpose by calculating a numerical value for each test representing its level of
instability [9, 10, 11, 12, 13]. The flakiness score of a test is derived from analyzing its execution history
over a defined period, such as several days, weeks, or months in the CI pipeline. This score represents
the degree of inconsistency in the results of a test, based on the ratio and frequency of change between
the different test results. Tests that consistently produce the same result are considered stable, whereas
alternating results are marked as more flaky.

In practice, a test with a high flakiness score means its results are unpredictable, and thus a candidate
for re-run validation, long-term monitoring, or root cause analysis and fixing. For example, suppose
that two different tests each fail three times in the last 20 runs. Test A fails in the first three consecutive
runs, while test B fails sporadically such that failures occur in the third, eighth, and fourteenth runs.
Although their failure counts are the same, Test B will exhibit more complexity, an unpredictable pattern
when it fails, and therefore a higher flakiness score, reflecting its greater non-deterministic nature.

Flakiness scoring introduces several concrete benefits throughout the life cycle of software testing.

1. Prioritization: By being able to rank tests according to their instability, the development effort
can be focused on the improvements with the greatest impact on the reliability of the system.

2. Visualization: Scoring enables graphical representations of flakiness statistics. Heat maps or
historical flakiness plots offer valuable insight into the characteristics of flaky tests.

3. Alerting: Automated systems can flag tests whose flakiness score exceeds a predefined instability
threshold, suggesting a review by the engineer.

4. Tracking: Flakiness scores can be tracked over time to assess performance in system improve-
ments or component degradation.

Flakiness scoring also complements the re-run, monitor, and fix cycle. During re-runs, scoring helps
decide whether additional executions are needed to reach a confident conclusion. In monitoring, scores
support detecting trends depending on the change in score such as, constantly increasing values would
mean instability is increasing as time advances. In the fix phase, the flakiness score can enable assessing
the condition before and after the solution, validating whether the applied fix has effectively reduced
the flakiness. Ultimately, flakiness scoring introduces an automated means of managing test instability
in CI environments, allowing automated flaky test identification. In doing so, it strengthens the overall
reliability and maintenance of the testing suite, ensuring that the effort spent is efficient and carefully
maintained throughout the software delivery pipeline.

Table 1 shows a summary of the flakiness score definitions defined in the white and grey literature at
the time of this writing. As shown in the table, the majority of flakiness scores proposed in the literature
so far rely solely on the presence of test result history justifying the creation of an artificial dataset
generation framework with which to generate data to compare different scoring algorithms.

Table 1
Comparison of flakiness score formulae and the data required to compute the score.

Paper (Year) Formula Required Data Elements

1 Kowalczyk et
al.,(2020) [9]

Entropy:
𝑓(𝑅𝑣,*) = −

∑︀
𝑖∈(𝑃,𝐹) 𝑝(𝑖) log2 𝑝(𝑖)

Flip rate:
𝑓(𝑅𝑣,*) =

𝑛𝑢𝑚𝐹𝑙𝑖𝑝𝑠(𝑅𝑣,*)
𝑛𝑢𝑚𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐹 𝑙𝑖𝑝𝑠(𝑅𝑣,*)

Unweighted Average:
𝑈𝐻(𝑅) =

∑︀
𝑣∈𝑉 𝑡

𝑡−𝐻

𝑓(𝑅𝑣,*)
|𝑉 𝑡

𝑡−𝐻 |
Weighted Average:
𝑊𝜆,𝑃 (𝑅,𝑛) = 𝑍𝑛 = 𝜆𝑥𝑛+(1−𝜆)𝑍𝑛−1

𝜆
∑︀𝑛−1

𝑖=0 (1−𝜆)𝑖

where 𝑥𝑛 =
∑︀

𝑣∈𝑉 𝑛𝑃
(𝑛−1)𝑃

𝑓(𝑅𝑣,*)

Test Result History.
Weights.

2 Gruber et
al.,(2023) [10]

Flip rate:
𝑓𝑙𝑖𝑝_𝑟𝑎𝑡𝑒(𝑅) =
𝑛−1∑︀
𝑡=1

(︃
1

𝑛−1 ·

{︃
1, if 𝑟𝑡 ̸= 𝑟𝑡+1

0, if 𝑟𝑡 = 𝑟𝑡+1

)︃
Decayed Flip rate:
𝑓𝑙𝑖𝑝_𝑟𝑎𝑡𝑒(𝑅,𝑤) =

𝑛−1∑︀
𝑡=1

⎛⎝ 𝑤(𝑡)
𝑛−1∑︀
𝑢=1

𝑤(𝑢)

·

{︃
1, if 𝑟𝑡 ̸= 𝑟𝑡+1

0, if 𝑟𝑡 = 𝑟𝑡+1

⎞⎠

Test Result History.
Weight functions and Weights.

3 Rehman et
al.,(2021) [11]

NFF rate:
NFFRate𝑡 =

𝑓
𝑟

Stable NFF rate:
StableNFFRate𝑡 = NFFRate𝑡(𝑓, 𝑟)
Likelihood:
𝑃𝑡(𝑓, 𝑟, 𝑝) =

(︀
𝑟
𝑓

)︀
· 𝑝𝑓 · (1− 𝑝)𝑟−𝑓

where 𝑝 = StableNFFRate𝑡

Test Result History.
Test Report History (Whether an issue or
bug was filed for the test).

4 Kisaakye et al.,
(2024) [12]

Transition rate: 𝑇 (𝑅𝑣,*,{𝑟1,𝑟2}) =
𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑅𝑣,*,{𝑟1,𝑟2})

𝑛𝑢𝑚𝑇𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑅𝑣,*)

Multi transition rate:∑︀
{𝑖,𝑗}⊆{𝑟1...𝑟𝑛},𝑖̸=𝑗

𝑇 (𝑅𝑣,*,{𝑖,𝑗})

Unweighted Average:
𝑈𝐻(𝑅) =

∑︀
𝑣∈𝑉 𝑡

𝑡−𝐻

𝑓(𝑅𝑣,*)
|𝑉 𝑡

𝑡−𝐻 |
Weighted Average:
𝑊𝜆,𝑃 (𝑅,𝑛) = 𝑍𝑛 = 𝑌𝑛

𝜆
∑︀𝑛−1

𝑖=0 (1−𝜆)𝑖

where 𝑥𝑛 =
∑︀

𝑣∈𝑉 𝑛𝑃
(𝑛−1)𝑃

𝑓(𝑅𝑣,*)

|𝑉 𝑛𝑃
(𝑛−1)𝑃

|

and 𝑌𝑛 = 𝜆𝑥𝑛 + (1− 𝜆)𝑌𝑛−1

Test Result History.
Weights.

5 Facebook/Meta
Eng. Blog,
(2020) [13]

Probabilistic Flakiness Score:
PFS = 𝑃 (Failure | good state)
(estimated via Bayesian model).

Test Result History.
context/features to distinguish “good” vs
“bad” state
Bayesian priors for model parameters.

6 Rasheed et al.,
(2020) [14]

Flakiness Score:
The variability between test runs.

Test Result History.

7 Haben et al.,
(2024) [15]

Flake rate:
𝑓𝑙𝑎𝑘𝑒𝑅𝑎𝑡𝑒(𝑡, 𝑛) =

1
𝑤

𝑛−1∑︀
𝑥=𝑛−𝑤

𝑓𝑙𝑎𝑘𝑒(𝑡, 𝑥)

Where 𝑓𝑙𝑎𝑘𝑒(𝑡, 𝑥) is defined as:
𝑓𝑙𝑎𝑘𝑒(𝑡, 𝑥) ={︃
1, if test 𝑡 flaked in build 𝑏𝑥

0, otherwise

Test Result History.

3. Constructing a Fair Evaluation Ground

This study has one driving research question.▷
⊴

�
◁How can we design a unified and statistically controlled dataset that enables a fair and

algorithm-neutral comparison of different flakiness scoring algorithms?

To compare two fundamentally different scoring models, a shared evaluation ground is required. This
dataset should not encode the assumptions or internal mechanics of any algorithm. In response to this,
we propose a framework to enable the generation of an artificial dataset designed to simulate flakiness
patterns in a controlled and observable way. Test executions are modeled across multiple versions, and
result sequences are generated using probabilistic functions that reflect common flakiness patterns.

The dataset should also support the input requirements of all currently available algorithms. By
examining Table 1, we can see that most flakiness algorithms require a test result history and one a
test report history. For this purpose, we select one algorithm as a representative for all algorithms that
require a test result history, the one proposed by Kisaakye et al. [12], and another representative of
those algorithms that require test report presence, Rehman et al. [16]. By studying the requirements of
these two algorithms, we are able to gather the broad spectrum of requirements for an artificial dataset
generation framework.

4. Requirements for a Dataset

Before compiling the requirements for a dataset generation framework, it is essential to understand the
characteristics of the datasets originally used in the evaluation of the representative flakiness scoring
algorithms.

• Rehman et al. evaluated the NFF algorithm using industrial-scale test execution data collected
from Ericsson’s CI environment [16]. Crucially, each test run is labeled with one of the two
possible binary outcomes, Pass and Fail, and information about the presence of fault reports,
aligning with the definition of flakiness used by the NFF algorithm, failures without a report.

• Kisaakye et al. evaluated the EFS algorithm against artificial datasets designed to emulate flakiness
using controlled statistical parameters [12]. The first is created using the dataset generation
algorithm proposed by Kowalczyk et al., and models flakiness using probability mass functions in
which case each test case has a static flakiness probability, and each version has a probability of
revealing a fault [9]. The second adds support for more test results, Error and Skip, and more
complex flakiness trends such as Increasing, Decreasing, Sporadic, Sudden spikes or drops.

Therefore, to allow a valid comparison between such models, a “good” dataset must meet these
essential criteria:

• Different Result States: The dataset should include different result states to model real world
build systems that have more results than Pass and Fail.

• Report Association: Some failure states must include report flags, and others must lack them,
to simulate realistic distributions of fault attribution. This is a necessary requirement for all
flakiness scoring algorithms that define flakiness as a failure in the absence of a test report.

• Varied Flakiness Trends: Flakiness should evolve over time using various trend profiles, such
as increasing, decreasing, or stable, to test the ability of each algorithm to react to environmental
variations.

• Version and Run Structure: The dataset must have a clear definition of version and run to
allow scoring models to assess the historical progression of the test behavior. Each test should
have multiple runs per version, for multiple versions.

5. Artificial Dataset Generation Framework

The dataset generation framework is built around six concepts: Test, Suite, Version, Run, Trends, and
Report Presence. These concepts are often represented intuitively in the literature, however, they require
clear definitions since they are necessary for most of the flakiness scores presented in Table 1. They aid
in modeling different dimensions of flakiness behavior, and, when systematically combined, simulate
evolving test flakiness.

5.1. Test

A Test represents the fundamental unit of analysis in the dataset. It encapsulates flakiness flags, flakiness
probability, flakiness probability change (𝛿), and a population of versions.

Within this framework, each test is represented as a simulated execution trace spanning multiple
versions each with hundreds of individual runs. Each test is assigned a fixed flakiness flag at the
beginning of the dataset generation process: clear, faulty or none which means the test is flaky. flaky
tests are eligible to receive flaky results, while clear and faulty tests are constrained to emit only Pass
or Fail results, respectively. The probability of flakiness for flaky tests is randomly assigned based on
predefined thresholds. This flakiness probability is forwarded to versions where the effect of the version
trend is calculated, and determines the occurrence of a flaky result for every run generated within
the version. The distinction between flaky and non-flaky tests ensures that the ground truth flakiness
of each test is known in advance, forming the basis for evaluating how accurately an algorithm can
differentiate this status based solely on test results.

5.2. Suite

A Suite is the highest-level organizational unit in the dataset generation framework. It encapsulates an
entire simulation scenario defined by a unique combination of flakiness trends and execution parameters.
Each suite includes a population of tests and a consistent configuration of version and run trends,
thereby modeling a testing environment.

5.3. Version

A version in the framework represents a high level temporal segment within the dataset, simulating a
specific period in the development cycle. The version is equivalent to a unique state of the software
product within a CI system, capturing a specific execution configuration of the whole ecosystem, and
acting as a reproducible environment for automated test execution. It can be represented by various
identifiers depending on the development or deployment environment used, such as a build number or
a tagged release.

The first version typically serves as a control baseline, while subsequent versions re-calculate the
version-level flakiness probability according to version trend. The change on top of the test-level
flakiness probability depends on the selected version trend, and is calculated using the 𝛿 value and the
ratio of current version to total version count. By modeling multiple versions, the dataset generated
reflects the evolving nature of development workflows.

5.4. Run

A run within the framework is the smallest unit of the dataset that carries the core information of each
individual test execution performed for a test in each version. This concept corresponds to a run within
a CI system which is a single execution of a test within a particular version. When a run is generated,
the result is decided independently according to a pre-defined flakiness probability assigned to the test
for the current version.

Run-level flakiness probability, is calculated in a manner similar to version-level flakiness probabilities
according to the selected run trend of the suite. At this level, the run scales the version-level flakiness
probability using the ratio of the current run to the total runs.

5.5. Trends

Once the test results are organized by version and run, it is possible to interpret and characterize
emergent flakiness behaviors as trends. Trends provide time-wise information about test stability.
Recognizing these trends allows test engineers to correlate the evolution of flakiness and take smarter
precautions or apply more targeted solutions.

Flakiness trends can be analyzed at two levels; across runs, i.e, run trend, how individual test results
evolve over multiple executions within the same version, and across versions, i.e., version trend, how
the overall flakiness score for a given test changes from one version to the next. Table 2 summarises
the trends implemented within the framework and how they affect flakiness behavior at the version
and run level. The trends presented in Table 2 build upon those presented in [12] and aim to generalise
the flakiness patterns found in practice. For example, the application of a direct fix for a single test
within a single version, such as a code change, should trigger a sudden drop in test flakiness, while
the application of an indirect fix, such as network stabilization, may only be observed as gradually
decreasing flakiness.

5.5.1. Version Trend

The trend of the version defines the evolution of the flakiness by specifying a 𝛿 value and changing the
base flakiness of each test by that amount accordingly.

These patterns are configured globally per suite and applied across all flaky tests in that suite.
This ensures statistical consistency while maintaining a controlled environment for evaluating the
performance of the algorithms. The dataset generation process implements the trends in Table 2 as
three types of change patterns: linear, exponential, and sudden, which control how the 𝛿 value is applied
to intermediate versions:

Linear: 𝑝𝑣 = 𝑝𝑡 ± 𝛿 · 𝑣

𝑉
(1)

Exponential: 𝑝𝑣 = 𝑝𝑡 ± 𝛿 ·
(︁ 𝑣

𝑉

)︁2
(2)

Sudden: 𝑝𝑣 =

{︃
𝑝𝑡, 𝑣 < 𝑇

𝑝𝑡 ± 𝛿, 𝑣 ≥ 𝑇
(3)

where 𝑝𝑣 is the version-level flakiness probability 𝑣, 𝑝𝑡 is the test-level flakiness probability, 𝑉 and
𝑣 the total number and the current number of versions, respectively. 𝑇 is the threshold version and,
when reached, the 𝛿 value is applied in full. The positive and negative signs in the formulae depend on
whether the trend is increasing (positive) or decreasing (negative).

As an example, if a test is assigned a test-level flakiness probability of 0.3 and the 𝛿 value is set to
0.15, then:

• For a decreasing trend, the probability that the final version is reached would be 0.3−0.15 = 0.15.

• For an increasing trend, the probability that the final version is reached would be 0.3+0.15 = 0.45.

• For a uniform trend, the probability would remain constant at 0.3.

Table 2
Trends implemented within the framework and the induced behavior at the Version and Run level

Trend Version Run
Uniform Every flaky test retains its initial

flakiness probability.
The flakiness probability does not
change within a version. Flaky
instances are spread randomly
across the run sequence.

Increasing The initial flakiness probability of
every flaky test increases linearly
across versions.

The flakiness probability starts
from the probability 0 and linearly
increases to the version level flaki-
ness probability. Flakiness is con-
centrated in the later runs.

Decreasing The initial flakiness probability of
every flaky test decreases linearly
across versions.

The flakiness probability starts
from the version-level flakiness
probability and linearly decreases
down to 0 probability. Flakiness is
concentrated in earlier runs.

Exponentially Increasing The initial flakiness probability of
every flaky test increases exponen-
tially across versions.

The flakiness probability starts
from the probability 0 and in-
creases exponentially up to the
version-level flakiness probability.
Flakiness is concentrated in the
later runs, with an accelerating in-
crease.

Exponentially Decreasing The initial flakiness probability of
every flaky test decreases exponen-
tially across versions.

The flakiness probability starts
from the version-level flakiness
probability and decreases exponen-
tially to 0 probability. Flakiness is
concentrated in earlier runs, with
an accelerating decrease.

Suddenly Increasing The initial flakiness probability of
every flaky test increases by the
𝛿 value after a specific version is
reached.

All flakiness occurs in a window
after a specific run is passed. The
flakiness probabilities are set to
the probability 0 before the spe-
cific run and then the version-level
flakiness probability is assigned.

Suddenly Decreasing The initial flakiness probability of
every flaky test decreases by the
𝛿 value after a specific version is
reached.

All flakiness occurs in a window
before a specific run is passed. The
flakiness probabilities are set to
the version-level flakiness proba-
bility before the specific run, and
then the 0 probability is assigned.

5.5.2. Run Trend

While the version trend controls the overall flakiness per version, the run trends in Table 2 determine
their temporal distribution within a version. This trend simulates realistic scenarios where test flakiness
may not be evenly distributed across the execution timeline.

Decoupling the run trend from the version trend allows independent control over the frequency and
time when failures occur. This separation is essential to evaluate the ability of each algorithm to detect
both distributed and localized flakiness, revealing the strengths and weaknesses of each algorithm in
varying testing scenarios.

Unlike version-level, where the 𝛿 value represents the difference between the probabilities of the
first and last versions, the run trend scales the run-level flakiness probability between 0 and 𝑝𝑣 . This
means that the probability at a given run 𝑝𝑟 is calculated as:

𝑝𝑟 = 𝑝𝑣 ·
𝑟

𝑅

where the scaling ratio is derived from 𝑅 and 𝑟, the total run count and the current run number,
respectively. The dataset implements the same change patterns: linear, exponential, and sudden. The
run-level flakiness probabilities are calculated as:

Linear: 𝑝𝑟 = 𝑝𝑣 · ±
𝑟

𝑅
(4)

Exponential: 𝑝𝑟 = 𝑝𝑣 · ±
(︁ 𝑟

𝑅

)︁2
(5)

Sudden: 𝑝𝑟 =

{︃
0, 𝑟

𝑅 < 𝜌𝑇

𝑝𝑣,
𝑟
𝑅 ≥ 𝜌𝑇

(6)

where 𝜌𝑇 is the threshold ratio such that 𝜌𝑇 = 0.5 corresponds to the halfway point in the run
sequence.

5.6. Report Presence

Although flakiness scoring provides quantitative values for identifying flaky tests, it does not naturally
differentiate between explainable and unexplainable failures. In practical terms, not all failed tests with
a high failure count or sporadic occurrences present the same flakiness severity. The availability of an
attached failure report represents a documented explanation of why a test failed, which may include
information on the root cause, or context possibly reducing the effort required to address the problem
and ultimately the severity of flakiness.

Within the framework, this report presence is represented by a report flag attached to each test. When
a test is generated, the report flag is also decided independently according to a specified probability.

6. Results

We generate and evaluate a dataset using the framework, available in our replication package [17].
During evaluation, we focus on dataset creation and the extent to which the generated dataset captures
the characteristics necessary for a meaningful assessment of the two exemplary scoring algorithms,
the No Fault Found (NFF) algorithm by Rehman et al. [16] and the Extended Flakiness Score (EFS)
by Kisaakye et al. [12]. This includes demonstrating how the dataset meets the established criteria
for a “good” dataset, by examining the distribution of result and report associations, the diversity of
flakiness patterns, and how the two algorithms would “observe” the dataset. These characteristics are
demonstrated using graphs of version trends and run trends, as well as visual representations of flakiness
probabilities of the ground truth of a single suite. This suite selected is the one with the trend pair of
increasing version flakiness and decreasing run flakiness, which will be called the increase-decrease
suite for simplicity throughout the rest of this section. The example suite is one of the 49 generated
suites within the dataset, chosen because it tries to portray a realistic development scenario: A situation
in which overall flakiness increases with each version, due to the growing complexity of the software,
meanwhile the development team continuously works on improving the system stability and fixing
flaky tests during a version so the run-level flakiness gradually decreases.

6.1. Dataset Overview

By iterating through all the combinations of the version and run trends discussed in Section 5, the
framework creates a dataset with 49 unique test suites, each modeling a distinct flakiness pattern
simulated over a year.

Each suite consists of; 100 tests each simulated with 4 versions with 250 runs in each version. This
yields a total of 5,000,000 result entries for investigation.

Each test run in the dataset is represented by the following fields, ensuring compatibility with different
flakiness scoring models:

• Test ID, Release ID, and Run ID to support detailed tracking of each test result.

• Report Flag indicating whether a report was created for the test.

• Verdict One of (Successful, Fail, Error, Skip) indicating the actual result.

• Execution Timestamp, representing the time at which the test was executed.

6.1.1. Test-Level Flakiness Assignment

Figure 1 presents the average base flakiness probability assigned to each test in the selected in-
crease–decrease suite, sorted in ascending order. This base probability is not the final flakiness, but
rather serves as an initial parameter from which the flakiness for each version will be derived according
to the assigned version trend.

In this configuration, the flakiness probabilities assigned at the test level for flaky tests range between
10% and 40%. The distribution of test categories is 20% clear tests, 20% faulty tests, and 60% flaky tests,
reflecting a scenario in which the majority of the test suite is flaky to varying degrees.

6.1.2. Version-Level Flakiness Assignment

Table 3 describes, and Figure 2 illustrates each of the seven version trends by their version-level flakiness
probability averages.
Table 3
Version-Level Flakiness Trend Types

Trend Summary Equation Figure

Uniform Flakiness remains constant across versions. — 2g
Decrease Flakiness changes linearly across versions with a negative slope. 1 2a
Increase Flakiness changes linearly across versions with a positive slope. 1 2c
Decrease Exponential Flakiness changes exponentially across versions with a negative

rate (slow early decrease, faster later).
2 2b

Increase Exponential Flakiness changes exponentially across versions with a positive
rate (slow early increase, faster later).

2 2d

Sudden Decrease Flakiness changes suddenly at threshold version 𝑇 by a negative
step.

3 2e

Sudden Increase Flakiness changes suddenly at threshold version 𝑇 by a positive
step.

3 2f

6.1.3. Run-Level Flakiness Assignment

The Table 4 describes and Figure 3 illustrates each of the seven run trends by their run-level flakiness
probability averages.
Table 4
Run-Level Flakiness Trend Types

Trend Summary Equation Figure

Uniform Flakiness remains constant across runs. — 3g
Decrease Flakiness changes linearly across runs with a negative slope. 4 3a
Increase Flakiness changes linearly across runs with a positive slope. 4 3c
Decrease Exponential Flakiness changes exponentially across runs with a negative rate

(slow early decrease, faster later).
5 3b

Increase Exponential Flakiness changes exponentially across runs with a positive rate
(slow early increase, faster later).

5 3d

Sudden Decrease Flakiness changes abruptly at threshold run 𝑇𝑟 by a negative
step.

6 3e

Sudden Increase Flakiness changes abruptly at threshold run 𝑇𝑟 by a positive step. 6 3f

6.2. Assumptions on Flakiness Distribution

To ensure a fair, yet challenging, evaluation setting, the probabilities were carefully chosen. 20% are
designated as clear, always passing, and another 20% as faulty, always failing. This guaranties that
the presence of non-flaky tests, existing in equal proportions within the dataset, providing an equal
baseline by which flakiness can be distinguished. The remaining 60% of the tests are flaky. Each flaky
test was assigned a base flakiness probability drawn uniformly from the range of 0.1 to 0.4. This uniform
assignment ensures diversity in flakiness severity while avoiding bias toward particular instability
levels.

When generating each individual run, if the execution was flaky, its outcome was randomly deter-
mined according to additional probability weights. Reports were attached in only 20% of such flaky
runs, simulating the noise of a system. flaky results were assigned: skip (10%), error (10%), and fail
(80%). This selection ensures failures are the dominant, while still providing a variety of result states.

This probability design was motivated by two goals:

• Setting 60% of the dataset as flaky, slightly more than half of all tests, provides sufficient coverage
for evaluation while preserving a significant share of deterministic results.

• The distribution of the presence of the report (20%) was aligned with the combined proportion of
skip and error results (10% + 10%). In this way, both algorithms face an equal share of non-fail
result states.

6.3. Algorithm Perspectives

In this section, we examine how the NFF and EFS algorithms interpret the artificially generated dataset,
focusing on the increase-decrease suite as the representative example.

6.3.1. Trend Correlation with Ground Truth

Figure 4a and Figure 4c present the average NFF Rate computed in the example suite, allowing a direct
comparison with the ground truth trends shown in Figure 4b and Figure 4d. The version-level analysis
in Figure 4a shows an increasing average of the NFF Rate over successive versions. This pattern is
consistent with the expectation from ground truth as the system evolves and its complexity increases.
The run-level analysis in Figure 4c reveals a decreasing trend in the average NFF rates on run basis.
This reflects the ongoing stabilization efforts during the version, aligning with the ground truth towards
the later runs.

The alignment between these NFF Rate patterns and the ground truth demonstrates that the intended
version and run trends are preserved in NFF algorithm-specific metrics. This outcome confirms that
the NFF algorithm successfully captures the underlying flakiness dynamics through its own metric
definitions.

6.3.2. Outcome Correlation of NFF and EFS

Figure 5a and Figure 5b present the outcome ratios according to the assumptions embedded within the
NFF and EFS algorithms. When these figures are compared, both algorithms are observed to capture
the intended outcome composition of approximately 20% clear, 20% faulty, and 60% flaky tests.

The perspective of the EFS algorithm decomposes all possible outcomes successful, skip, error, and fail.
The NFF algorithm does not differentiate between clear and faulty tests; all tests rather than failures
without a report are visualized in green.

When comparing the two plots, a strong correlation is observed in the maximum and minimum
ratios of flaky results. Both algorithms consider the flakiest tests at around 20% flaky result ratio across
all runs, with the remaining flaky tests showing a gradual decrease over the suite.

The slight difference in the ratio between the NFF and EFS plots originates from the recognition of
skip (yellow), error (purple) states, and faulty tests (full red) by the EFS algorithm that are not considered

individually by the NFF algorithm. In addition to this visual difference, both graphs correlate with each
other in outcome variance and distribution in terms of providing a fair comparison ground for both
algorithms.

6.3.3. History Correlation of NFF and EFS

Figure 6a and Figure 6b present the test execution results for the first 20 tests of the last version of the
example suite. These histories visualize how each algorithm observes run-level flakiness according to
its mathematical definition of flakiness. NFF looks at report presence, while EFS looks at test outcomes
directly. Despite the definitional differences of flakiness, both algorithms exhibit strong alignment in
the positional distribution of flaky outcomes such that the same runs are generally marked as flaky
in both histories. This alignment demonstrates that the dataset satisfies run-level compatibility for
algorithm-agnostic comparisons.

Another notable observation is the visible influence of the decreasing run trend on the positioning
of the flaky outcomes. It can be observed that flaky outcomes are concentrated at the start of the
version. This pattern is consistent across both algorithms, further validating that the simulated dataset
accurately embeds the intended run trend characteristics.

6.4. Summary of Dataset Generation Results

The results presented in this section demonstrate that the artificially generated dataset successfully
embeds the intended version and runs trends while maintaining algorithm-natural compatibility. By
configuring diverse combinations with version-level and run-level flakiness probability distributions,
the dataset captures a wide range of possible software testing scenarios. The ground truth plots confirm
these patterns from the perspective of the target algorithms. The functional requirements of each
algorithm are satisfied by the generated dataset on report flags, result variety, and varying distributions
of flakiness.

Furthermore, algorithm-specific analyses for NFF and EFS show that both algorithms are able to detect
trends within the underlying dataset configuration, despite differences in their definitions of flakiness.
The close correlation between algorithm-specific metrics and definitions validates the integrity of the
dataset and ensures that the comparative analysis between NFF and EFS can be performed on a fair and
representative basis.

7. Related Work

The International Dataset of Flaky Tests (IDoFT) is a collection of flaky tests in Java and Python
represented as project URLs along with identifying features such as the commit when flakiness was
detected, module path, fully qualified test name, category, and status [18]. While this dataset is invaluable
to test flakiness research, the absence of actual test results hinders it’s usability as a benchmark for the
comparison of different flakiness scoring algorithms.

To address this gap, Wendler and Winter published a regression test history dataset to aid test flakiness
research [19]. Their dataset features eleven module-flakiness introducing commit combinations from
8 Maven projects included within the IDoFT dataset. The complete dataset contains 28200 test result
histories for 840 tests with history lengths ranging from 1 to 474 commits. This dataset would be an
excellent first step toward comparing flakiness scoring algorithms against real data. However, since the
underlying probability of flakiness is unknown, it cannot enable a rigorous comparison of flakiness
scoring formulae and algorithms under different situations. This is the gap our work seeks to fill.

Regarding dataset generation, one other study comes close to our work. FLAKYRANK is a ranking
framework proposed by Wang et al. that relies on augmented learning principles [20]. To address the
under-representation of flaky tests in their training dataset, Wang et al. used Generative Adversarial
Networks to create synthetic examples. However, the purpose of their dataset generation is different
from our work. Their dataset is based on the FlakeFlagger dataset [21]. Therefore, their dataset

generation approach is designed to create a dataset to evaluate approaches that identify flakiness
without rerunning. As such, test result and report history are not part of the features in their dataset
generation approach.

8. Threats to Validity

One threat concerns the gap between the flakiness of the artificial and real world. In our dataset
generation, we proposed a generic way of the data creation process by combining pre-defined trends.
Although this approach provides a systematic way to simulate controlled test histories, real-world
flakiness features occurring in unique patterns or edge cases may not be captured by our method.

In addition, since we re-implemented the flakiness scoring algorithms, our interpretation may differ
from the one used in the original works. However, we do not expect a considerable deviation from the
original implementations because we used the same formulae presented in their works.

Finally, the choice of algorithms we implemented for this work, while representative, presents a
threat since we do not capture any edge cases that may occur during scoring. However, we do not
expect large deviations in the way algorithms relying solely on test execution history will observe the
generated dataset.

9. Conclusion

Recognising the role of flakiness scores as decision support during the process of flakiness mitigation,
this work examined the different flakiness scoring algorithms proposed in the white and grey literature.
We identified a gap in the literature pertaining to a mechanism through which to generate reproducible
datasets to rigorously assess the strengths and weakness of different flakiness scoring algorithms. To
address this gap, we developed an algorithm-neutral dataset generation framework (FlaDaGe) that can
be used to model different flakiness situations and assess different flakiness scoring algorithms. Finally,
we demonstrated how it can be used to generate a dataset to assess the performance of two pre-existing
flakiness scoring algorithms defined in [16] and [12], showing how each algorithm “observes” the
simulated flakiness. In future work, the dataset generation framework can be extended to support a
wider range of features necessary for new flakiness scoring algorithms. A broader evaluation against
the rest of the algortihms, and a comparison of their performance against real world data, may also be
conducted.

Acknowledgments

This work is supported by the Research Foundation Flanders (FWO) via the BaseCamp Zero Project
under Grant number S000323N.

References

[1] F. Lonetti, E. Marchetti, Emerging software testing technologies, in: Advances in computers,
volume 108, Elsevier, 2018, pp. 91–143.

[2] A. Bertolino, Software testing, SWEBOK 69 (2001).
[3] O. Parry, G. M. Kapfhammer, M. Hilton, P. McMinn, A survey of flaky tests, ACM Transactions on

Software Engineering and Methodology (TOSEM) 31 (2021) 1–74.
[4] A. Tahir, S. Rasheed, J. Dietrich, N. Hashemi, L. Zhang, Test flakiness’ causes, detection, impact

and responses: A multivocal review, Journal of Systems and Software 206 (2023) 111837.
[5] Q. Luo, F. Hariri, L. Eloussi, D. Marinov, An empirical analysis of flaky tests, in: Proceedings of

the 22nd ACM SIGSOFT international symposium on foundations of software engineering, 2014,
pp. 643–653.

https://soft.vub.ac.be/basecampzero/index.html

[6] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, J. Bell, A large-scale longitudinal study of flaky
tests, Proceedings of the ACM on Programming Languages 4 (2020) 1–29.

[7] W. Lam, K. Muşlu, H. Sajnani, S. Thummalapenta, A study on the lifecycle of flaky tests, in:
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, 2020, pp.
1471–1482.

[8] A. Berndt, S. Baltes, T. Bach, Taming timeout flakiness: An empirical study of sap hana, in:
Proceedings of the 46th International Conference on Software Engineering: Software Engineering
in Practice, 2024, pp. 69–80.

[9] E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, A. Memon, Modeling and ranking flaky
tests at apple, in: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Software Engineering in Practice, 2020, pp. 110–119.

[10] M. Gruber, M. Heine, N. Oster, M. Philippsen, G. Fraser, Practical Flaky Test Prediction using
Common Code Evolution and Test History Data , in: 2023 IEEE Conference on Software Testing,
Verification and Validation (ICST), IEEE Computer Society, Los Alamitos, CA, USA, 2023, pp.
210–221. URL: https://doi.ieeecomputersociety.org/10.1109/ICST57152.2023.00028. doi:10.1109/
ICST57152.2023.00028.

[11] M. H. U. Rehman, P. C. Rigby, Quantifying no-fault-found test failures to prioritize inspection
of flaky tests at ericsson, in: Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, 2021, pp.
1371–1380.

[12] J. Kisaakye, M. Beyazıt, S. Demeyer, Extending a flakiness score for system-level tests, in: IFIP
International Conference on Testing Software and Systems, Springer, 2024, pp. 292–312.

[13] Meta Engineering Team, How do you test your tests? A Probabilistic Flakiness Score for Testing at
Scale, 2020. URL: https://engineering.fb.com/2020/12/10/developer-tools/probabilistic-flakiness/.

[14] S. Rasheed, J. Dietrich, A. Tahir, On the Effect of Instrumentation on Test Flakiness , in: 2023
IEEE/ACM International Conference on Automation of Software Test (AST), IEEE Computer
Society, Los Alamitos, CA, USA, 2023, pp. 123–127. URL: https://doi.ieeecomputersociety.org/10.
1109/AST58925.2023.00016. doi:10.1109/AST58925.2023.00016.

[15] G. Haben, S. Habchi, J. Micco, M. Harman, M. Papadakis, M. Cordy, Y. Le Traon, The importance
of accounting for execution failures when predicting test flakiness, in: Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engineering, ASE ’24, Association
for Computing Machinery, New York, NY, USA, 2024, p. 1979–1989. URL: https://doi.org/10.1145/
3691620.3695261. doi:10.1145/3691620.3695261.

[16] M. H. U. Rehman, Quantifying Flaky Tests to Detect Test Instabilities, Ph.D. thesis, Master’s thesis.
Concordia University. https://spectrum. library. concordia . . . , 2019.

[17] Anonymous, Fladage: A framework for generation of synthetic data to compare flakiness scores,
2025. URL: https://doi.org/10.5281/zenodo.17206909. doi:10.5281/zenodo.17206909.

[18] W. Lam, International Dataset of Flaky Tests (IDoFT), 2020. URL: http://mir.cs.illinois.edu/flakytests.
[19] P. Wendler, S. Winter, Regression-test history data for flaky-test research, in: Proceedings of

the 1st International Workshop on Flaky Tests, FTW ’24, Association for Computing Machinery,
New York, NY, USA, 2024, p. 3–4. URL: https://doi.org/10.1145/3643656.3643901. doi:10.1145/
3643656.3643901.

[20] J. Wang, Y. Lei, M. Li, G. Ren, H. Xie, S. Jin, J. Li, J. Hu, Flakyrank: Predicting flaky tests using
augmented learning to rank, in: 2024 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), IEEE, 2024, pp. 872–883.

[21] A. Alshammari, C. Morris, M. Hilton, J. Bell, Flakeflagger: Predicting flakiness without rerunning
tests, in: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), 2021, pp.
1572–1584. doi:10.1109/ICSE43902.2021.00140.

https://doi.ieeecomputersociety.org/10.1109/ICST57152.2023.00028
http://dx.doi.org/10.1109/ICST57152.2023.00028
http://dx.doi.org/10.1109/ICST57152.2023.00028
https://engineering.fb.com/2020/12/10/developer-tools/probabilistic-flakiness/
https://doi.ieeecomputersociety.org/10.1109/AST58925.2023.00016
https://doi.ieeecomputersociety.org/10.1109/AST58925.2023.00016
http://dx.doi.org/10.1109/AST58925.2023.00016
https://doi.org/10.1145/3691620.3695261
https://doi.org/10.1145/3691620.3695261
http://dx.doi.org/10.1145/3691620.3695261
https://doi.org/10.5281/zenodo.17206909
http://dx.doi.org/10.5281/zenodo.17206909
http://mir.cs.illinois.edu/flakytests
https://doi.org/10.1145/3643656.3643901
http://dx.doi.org/10.1145/3643656.3643901
http://dx.doi.org/10.1145/3643656.3643901
http://dx.doi.org/10.1109/ICSE43902.2021.00140

A. Flakiness Assignment

A.1. Test-Level Flakiness Assignment

Figure 1: Average Test-Level Flakiness Probability per Test

A.2. Version-Level Flakiness Assignment

Figure 2: Version-Level Flakiness Probability Averages

(a) Decrease (b) Decrease exponential

(c) Increase (d) Increase exponential

(e) Sudden decrease (f) Sudden increase

(g) Uniform

A.3. Run-Level Flakiness Assignment

Figure 3: Run-Level Flakiness Probability Averages

(a) Decrease (b) Decrease exponential

(c) Increase (d) Increase exponential

(e) Sudden decrease (f) Sudden increase

(g) Uniform

B. Algorithm Perspectives

B.1. Trend Correlation with Ground Truth

Figure 4: NFF and Ground Truth Pattern Correlation

(a) Average NFF rate per version (b) Average flakiness probability per version

(c) Average NFF rate per run (d) Average flakiness probability per run

B.2. Outcome Correlation of NFF and EFS

Figure 5: Comparison of NFF and EFS Ratio per Test

(a) NFF ratio per test (b) EFS result ratio per test

B.3. History Correlation of NFF and EFS

Figure 6: Comparison of NFF and EFS Views of History for the First 20 Tests

(a) NFF View of History of First 20 Tests (b) EFS View of History of First 20 Tests

	1 Introduction
	2 Flakiness Scores
	3 Constructing a Fair Evaluation Ground
	4 Requirements for a Dataset
	5 Artificial Dataset Generation Framework
	5.1 Test
	5.2 Suite
	5.3 Version
	5.4 Run
	5.5 Trends
	5.5.1 Version Trend
	5.5.2 Run Trend

	5.6 Report Presence

	6 Results
	6.1 Dataset Overview
	6.1.1 Test-Level Flakiness Assignment
	6.1.2 Version-Level Flakiness Assignment
	6.1.3 Run-Level Flakiness Assignment

	6.2 Assumptions on Flakiness Distribution
	6.3 Algorithm Perspectives
	6.3.1 Trend Correlation with Ground Truth
	6.3.2 Outcome Correlation of NFF and EFS
	6.3.3 History Correlation of NFF and EFS

	6.4 Summary of Dataset Generation Results

	7 Related Work
	8 Threats to Validity
	9 Conclusion
	A Flakiness Assignment
	A.1 Test-Level Flakiness Assignment
	A.2 Version-Level Flakiness Assignment
	A.3 Run-Level Flakiness Assignment

	B Algorithm Perspectives
	B.1 Trend Correlation with Ground Truth
	B.2 Outcome Correlation of NFF and EFS
	B.3 History Correlation of NFF and EFS

