
Evolution-Resilient Class Contours
Mattia Giannaccari1, Marco Raglianti1

1REVEAL @ Software Institute – USI, Lugano, Switzerland

Abstract
Analyzing large scale object-oriented software systems is complicated. Analyzing their evolution increases the
complexity by one order of magnitude, due to the additional dimension of time. While software visualizations
can help to analyze a single system snapshot, having informative evolution-resilient visualizations is challenging.

We present our recent work on Class Contours, a novel visualization metaphor that depicts source code
entities as building facades by mapping domain properties as, for example, code-level features (e.g., attributes,
methods) on visual properties (e.g., doors, windows). Architectural patterns (as in urban architecture) emerge
naturally. We explore an evolution of the current implementation of Class Contours to include time in a flexible
yet deterministic, informative, robust, and scalable way.

Keywords
Class Contours, Evolution-Resilient Software Visualization, Software Evolution

1. Introduction

Comprehending classes is critical to evolve a codebase [1]. When analyzing object-oriented software
systems, developers need to reconstruct the role and behavior of a class in their mental models, from
scattered fragments of code [2], visualized as multiple continuous pages of text. Their focus often
wanders from packages in a top-down approach to classes in a bottom-up fashion, alternating between
different knowledge retrieval strategies in an opportunistic way [3]. Gathering new knowledge about
the system incrementally, by looking at overviews, is complemented by inspecting key points in detail
for specific application logic hotspots that provide information about the system’s inner working.

To address these needs we proposed Class Contours [4], leveraging the building facades metaphor
to use simple 2D architectural elements, which represent features of the classes in an intuitive and
coherent way. In the resulting architectural patterns (as in urban architecture), similar class roles
correspond to similar buildings in the Class Contours overview. It becomes easier at this point to
spot and analyze similarities and differences, to identify outliers and application logic hubs, to allocate
attention to specific parts of the system according to the task at hand. Internal (e.g., attributes, methods)
and external structure (e.g., clients, providers) appear on the facade of the building. For example, the
number of lines of code is mapped to the width of the structure, attributes are represented as doors,
and methods as windows, while, at a glance, the repeating glyphs start to form a pattern language.

2. Evolving ZION

We implemented the Class Contours metaphor [4] in a visualization tool, ZION (for which a tool demo
is under review at ICSE 2026), to validate our approach. With respect to the previous publication we
already improved its parsing mechanisms to more reliably extract class features (and provide better
future cross-language compatibility) by substituting VerveineJ with CodeQL.1 Meanwhile, we started to
consider strategies to compare class contours of two versions of a system to highlight the evolution
direction and which domain changes trigger a visually recognizable structural change. To achieve this
goal for evolutionary analysis, two features are missing from ZION’s current implementation.

BENEVOL’25: Belgium Netherlands Software Evoltuion Workshop, November 17–18, 2025, Enschede, The Netherlands
$ mattia.giannaccari@usi.ch (M. Giannaccari); marco.raglianti@usi.ch (M. Raglianti)
� https://mattiagiannaccari.github.io (M. Giannaccari); https://www.inf.usi.ch/phd/raglianti/ (M. Raglianti)
� 0009-0008-9356-2921 (M. Giannaccari); 0000-0002-6878-5604 (M. Raglianti)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1VerveineJ: https://modularmoose.org/developers/parsers/verveinej/ – CodeQL: https://codeql.github.com/

1

mailto:mattia.giannaccari@usi.ch
mailto:marco.raglianti@usi.ch
https://mattiagiannaccari.github.io
https://www.inf.usi.ch/phd/raglianti/
https://orcid.org/0009-0008-9356-2921
https://orcid.org/0000-0002-6878-5604
https://creativecommons.org/licenses/by/4.0/deed.en
https://modularmoose.org/developers/parsers/verveinej/
https://codeql.github.com/


Mattia Giannaccari et al. CEUR Workshop Proceedings 1–2

Pattern across multiple classes

Containment between packages

Classes inside a package

Package

Large chunks of application logic

Figure 1: Hierarchical view of Class Contours in a tree layout of packages for antlr4 classes.

Figure 2: Class Contours rectangle
packing (ArgoUML).

For positioning elements, ZION currently has just two layouts.
A horizontal tree layout (Figure 1) to arrange Contours mirror-
ing the structure of packages. And a rectangle packing layout
(Figure 2) for space efficient placement in compact overviews,
highlighting patterns at class level. We will discuss advanced po-
tential layout strategies that remain consistent across different
versions of the system, allowing to focus on the evolution of the
contours themselves. While robust layouts that are evolution-
resilient work for the city metaphor (e.g., [5]), we would like to
validate them in our simpler 2D representation.

The second missing feature is akin to normalization but in-
volves deciding which metrics to visualize as 1-to-1 mapping of
the underlying feature and which are an abstraction of a core
characteristic, independently from its “magnitude”. The original
intention of Class Contours was to represent the low level fea-

tures in high fidelity when zooming in on a single building, while striking a convenient middle ground
for scalability of overviews on large code bases. The new goal is to tackle the additional complexity of
evolution, and time as a new dimension, while letting the Contours highlight important changes.

3. Conclusion

We present our current implementation of Class Contours, the recent update of the parser and its
implications, while focusing on evolution-resilient layout strategies and normalization mechanisms
to further extend the Class Contours beyond single snapshot analysis of a system. We sketch out for
feedback the planned validation of our approach with the comparisons between UML class diagrams
and class blueprints [6] on specific maintenance and evolution tasks.
Acknowledgments: This work is supported by the SNSF project “FORCE” (Project No. 232141).
Declaration on Generative AI: The author(s) have not employed any Generative AI tools.

References

[1] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Connallen, K. A. Houston, Object-Oriented
Analysis and Design with Applications, 3rd ed., Addison Wesley, 2004.

[2] M.-A. Storey, Theories, methods and tools in program comprehension: Past, present and future, in:
Proceedings of IWPC 2005, IEEE, 2005, pp. 181–191.

[3] M.-A. Storey, D. F. Fracchia, H. A. Müller, Cognitive design elements to support the construction of
a mental model during software exploration, Journal of Systems and Software 44 (1999) 171–185.

[4] M. Giannaccari, M. Raglianti, M. Lanza, Skylines: Visualizing object-oriented software systems
through Class Contours, in: Proceedings of VISSOFT 2025, IEEE, 2025, pp. 64–68.

[5] F. Pfahler, R. Minelli, C. Nagy, M. Lanza, Visualizing evolving software cities, in: Proceedings of
VISSOFT 2020, IEEE, 2020, pp. 22–26.

[6] N. J. Agouf, S. Ducasse, A. Etien, M. Lanza, A new generation of CLASS BLUEPRINT, in: Proceedings
of VISSOFT 2022, IEEE, 2022, pp. 29–39.

2


	1 Introduction
	2 Evolving ZION
	3 Conclusion

