ClassViz: From Inspection Tool to Research Vessel

Satrio Adi Rukmono!

'Eindhoven University of Technology (TU/e), De Zaale, Eindhoven, The Netherlands

Abstract

This work explores how visualisation bridges precise but complex software representations and the needs of
human comprehension. We present ClassViz, a prototype that began as a lightweight inspection aid for code-to-
graph instantiations and evolved through student projects, industrial collaborations, and research integration
into a versatile platform for exploring software structures. Its trajectory illustrates how even a modest tool can
become a shared environment for experimentation, evaluation, and communication.

Keywords

software architecture visualization, software maintenance, program comprehension

1. Introduction

Visualisation is central to understanding and maintaining software systems, complementing textual
and structural representations. Graph-based models of source code are precise but often too large for
direct inspection. In prior work, we proposed [1] labelled property graph (LPG)-based representations
of software entities, relations, and attributes in a schema-light format [2]. Visualisation provides an
intermediate form for inspecting instantiation outputs and communicating insights.

ClassViz' was developed to support such inspection, evolving into a platform used in research,
education, and industry. It featured in the industrial evaluation of our deductive software architecture
recovery (DSAR) technique [3, 4], acting as the “exoskeleton” for explanatory artefacts shown to
participants.

2. Related Work

Software visualisation has addressed aspects of structure, behaviour, and evolution. A systematic review
by Chotisarn et al. [5] of 105 articles (2013-2019) found that visualisations primarily target design,
implementation, and maintenance tasks, typically using multivariate, graph-based, or metaphorical en-
codings (e.g., cities). Despite this diversity, industrial uptake remains limited, especially for maintenance
and debugging. This underscores the need for practical and usable tools.

In software architecture visualisation, Shahin et al. [6] surveyed 53 studies (1999-2011). They identi-
fied four main types: graph-based, notation-based, matrix-based, and metaphor-based. Graph-based
approaches dominate recovery and evolution tasks; metaphor-based views offer intuitive overviews,
but raise scalability and cognitive concerns. Most techniques were tested only on small or academic
systems, with little industrial use. The review emphasised the dual role of architecture visualisation:
supporting both structural viewpoints (components, connectors, layers) and decisional viewpoints
(design decisions and rationale).

These reviews frame our visualisation approach. ClassViz supports structural analysis of instantiated
architecture graphs with filtering, layout, and layering. Its adoption in academic and industrial settings
illustrates one response to calls for usable and practice-oriented tools.

BENEVOL’25: The 24th Belgium-Netherlands Software Evolution Workshop, November 17-18, 2025, Enschede, The Netherlands
& s.arukmono@tue.nl (S. A. Rukmono)

&} https://satrio.rukmono.id/ (S. A. Rukmono)

® 0000-0001-9480-7216 (S. A. Rukmono)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5y

'Live and loaded with JHotDraw 5.1 example input: https://satrio.rukmono.id/classviz/?p=jhotdraw-5.1

mailto:s.a.rukmono@tue.nl
https://satrio.rukmono.id/
https://orcid.org/0000-0001-9480-7216
https://creativecommons.org/licenses/by/4.0/deed.en
https://satrio.rukmono.id/classviz/?p=jhotdraw-5.1

3. Visualisation Approach

ClassViz began as a pragmatic aid for visually inspecting code-to-graph instantiations [1]. It evolves
through cycles of feedback, extension, and integration. Rather than a fixed set of requirements, its
growth was driven by recurring needs arising from ongoing research. These needs form the basis for
three research questions.

RQ1 What visual affordances support effective lightweight inspection of labelled-property code graphs
for correctness and usability assessment?

RQ2 What factors influence the adoption, extension, and appropriation of software structure visualisation
tools in educational and industrial contexts?

RQ3 How can software visualisation tools be designed to serve as effective frontends for diverse
automated analyses such as architectural recovery and summarisation?

3.1. RQ1: Lightweight Visual Inspection of Graphs—Our Motivation and Origin

The initial version of ClassViz focused on inspecting large and complex graph instantiations produced
by our tool Javapers?. These graphs were precise, but overwhelming, too large for immediate feedback.
The initial design therefore emphasised clarity and filtering to produce diagrams that could be inspected
during iterative development.

In ClassViz, nested boxes represented packages and classes, with class-level relations drawn as
coloured UML-style line-with-end symbols (e.g., hollow triangles for inheritance, diamond for composi-
tion). Filtering allowed toggling of primitive types, packages, and relation types, and highlighting of
classes by name. Click-through navigation revealed related elements, supporting localised exploration
without overwhelming the view. Relations could be rendered as orthogonal or Bézier lines, with a choice
of layouts from general-purpose algorithms. Figure 1 shows the initial version of ClassViz applied to
JHotDraw 5.1.

These design choices enabled rapid inspection during the development of our LPG instantiation
tool, allowing correctness and usability checks without heavy tooling. ClassViz offers minimal but
expressive visual affordances—nested boxes, UML-style arrows, filters, and highlighting—that reduce
cognitive load while preserving structural fidelity. Implemented as a lightweight browser application, it
runs easily during short development cycles. These simple encodings, filtering, navigation, and
infrastructure made it an effective inspection aid, enabling quick structural sanity checks
and supporting practical debugging of graph instantiation quality throughout development.

3.2. RQ2: Accessibility and Modifiability in Educational and Industrial Contexts

ClassViz’s lightweight, browser-based architecture and minimal infrastructure assumptions made it
easy to adopt and extend. Key factors that influenced its uptake in educational and industrial contexts
include: (i) low barrier to entry for developers, (ii) openness to diverse input/output semantics in the
same syntax, and (iii) modifiability by design. These qualities enabled it to function not just as a tool
but as a shared platform across multiple independent student projects and industry-facing efforts.

Several student extensions explored dynamic behaviour visualisation. Fung [7] added overlays for
execution traces; Tanis [8] built a summarisation frontend for large-scale traces; He [9] combined
static structure with activity overlays; and Van Esch [10] brought ClassViz concepts to virtual reality,
combining structure and dynamic sequence data in 3D. Together, these works show how runtime-
oriented adaptations were feasible across fidelity levels and modalities.

Other works focused on improving structural clarity and visual encoding. Kloet [11] addressed
the legibility and usefulness of applying distinct layouts across abstraction levels. Bubblelea and
CodeView [12, 13] introduced alternative layout metaphors: layered bubble-packing and abstracted

*https://github.com/rsatrioadi/javapers

https://github.com/rsatrioadi/javapers

Class Diagram Visualization
Save diagram
| Save as SVG || View SVG |

Tip: try (right-)clicking on nodes and
edges!
Nodes [

. cnterfaces
() Show primitives ConnectionFigure

() Show packages

Relationships [ChangeConnectionStartHandle |
Connection Ortho Bezier
9) ChangeConnectionEndHandle
@ Speciaizes © o) fg ge! ntertaces
[Holds o) ® > -Fvgure
CJReturns o e o <abstract>
3 s ChangeConnectionHandle) specializes
& Accepts ®
[JAccesses ® eccept® <abstrach
AbstractFigure
[calls @ 87\(91;09:
onnector
& Constructs @® specializes ~ specializes
specializes
Layout algorithm PolyLineFigure |
« > ot <abstract»
Select layout | Klay v pree o] core! AttributeFigure
| Relayout |
specializes speciatizes specializes, specializes specializes specializepecializes
Highlight classes
Separate classes by comma, const®
whitespace, or new line. LocatorConnect [ChopBoxConnector] [ShortestDi]
construets, _ 5
Gonnector specializes spocializes specializes L { igure] ElipseFigure
| constivets . consiructs specializes
4
ighli ChopPolygonConnector oC. ChopEllipseConnector]
[Reset | [Highlight | [ChopPolyg: PoiyL T pElipse | N

[Toggle visibility |

(a) Classes involved in an instance of the strategy design pattern in JHotDraw 5.1. Other classes are filtered out.

Class Diagram Visualization

Save diagram

| save as SVG || View SVG |

Tip: try (right-)clicking on nodes and
edges!

oH
cHifa

Nodes CHifadraw
B e Griia v orins Crita gt Chfadraw sampls
Show primitives : Torawropell [Dlamondrigos), [i v e e e
& Show packages X = e - P — =
T T o e O == S = = H
Relationships T P e S N o e = B
. i FEY cais als
Corénecfu;n Ortho Bezler N IRzl & il oyl e FerFgre
OSpeciaizes ©® O R = S e s
[Holds (o] @ ol oaly, caty a
CJReturns o e [CrepPolvesc: = et b
) Accepts @ Sy Sy =
==
[Accesses ® ot = e
- e s
Calls o 2 [Potmpanis] [mabmwiows] P
Constructs
b [FolowtRLToa]
Layout algorithm CommaniCios] " (Commandiions] | Cammanition
g
Select layout | klay v % H @ oty hi g
T — S,
Relayout| === Wk [avaDrawhoplet] ~{davaDrawhop]
Highlight classes 8,
Separate classes by comma, .
whitespace, or new line. N
4 [URLTeo]
) | L
. /) 4 (BouncogDraing] [Animator] [MySelectionTool
[Reset| Highlight | £
[AmatorDesmraia]
[Toggle visibility | %
&
LU Y Y ¢ o B
H &
% &

(b) All packages and classes of JHotDraw 5.1 (that fit the viewport) and the “calls” relations among the classes.

Figure 1: Screenshots from an early ClassViz version, showing JHotDraw 5.1 in different modes.

views, respectively, while Atisomya [14] explored direct mapping of analytical dimensions to visual
variables such as position and colour, showcasing the flexibility of the underlying design space.
ClassViz also served as a frontend for specialised analysis pipelines. Asuni [15] added overlays for
vulnerability detection results. Kakkenberg et al. [16] applied ClassViz principles to low-code platforms,
resulting in Arvisan, an industrially evaluated tool that continues to be useful in different domains [17].
Notably, the simplicity of ClassViz brings operational limitations that encouraged parallel evolution.
Morier® developed a shared backend to support authentication, graph versioning, and permission-aware
data access, laying the groundwork for a unified ecosystem across ClassViz forks and related tools.
Overall, these projects demonstrate that ClassViz’s adoption and extension were driven not by
feature completeness but by a deliberately minimal and open design that enabled diverse appropriation.

*https://github.com/SimonMorier/ArchManager-back

https://github.com/SimonMorier/ArchManager-back

The low entry barrier and minimal coupling empowered non-core developers to repurpose
ClassViz across adjacent (sub)domains without deep reengineering.

3.3. RQ3: Visual Frontend for Architectural Analysis and Explanation

Feedback from students and collaborators led to iterative adaptations that broadened ClassViz’s func-
tionality and transformed it into a shared research artefact. A central enabler of this evolution is its
use of LPGs, which allow analysis results to be integrated flexibly, either as additional nodes/edges
or as properties on existing ones. These properties can be directly mapped to visual variables, e.g.,
metrics to colour gradients, classifications to discrete colours, and ranked values to spatial layout (e.g.,
vertical position by layer). This makes ClassViz well-suited as a frontend for structurally anchored
explanations.

ClassViz was used as the presentation layer for hierarchical summarisation [18] and DSAR [3] outputs.
To support these use cases, we added node colouring for classifications (i.e., role stereotypes [19],
architectural layers [20]) and a detail pane for automatically generated summaries. These enhancements
grounded abstract analysis results in the system’s structure, improving interpretability and traceability.

Additional enhancements, some drawn from extension projects, were integrated to further support
explanations. These include lifting and lowering relations across abstraction levels, gradient and
thickness styling for edges to encode direction and weight, and more intuitive filtering and navigation.
Figure 2 shows a recent version of ClassViz with role-classification results visualised using colour-coded
nodes.

4 (&) (B Software Visualization: jhotdraw-5.1.json

Tip: try (right-)clicking on nodes and edges!
Watch a s

Treces
Graph
Layout algorithm
Select layout Kiay v
Relayout >
~
-
Nodes. /
Hide classes | Show classes N N \
Node Coloring | . 5
O None
© Role Stereatype N\ .
O Architectural Layer N\ T
Node Color Legend - \

Controller NN w \\ S

Infc

Interfacer

facer
Service Provider
Structurer

Q“ / ’
Highlight nodes \\ !

es by comma,

Reset | Highiight

Toggle visibility

Figure 2: A recent version of ClassViz showing classes from JHotDraw 5.1 classified into role stereotypes [19]
and call relation lifted into package level.

ClassViz was then deployed in an industrial evaluation at ASML. Our study [4], under review at
ICSE-SEIP, assessed the tool in context: ClassViz acted as the explanatory surface for DSAR-derived
architectural views. What began as a simple tool for visual inspection evolved into a presentation layer
for explanation workflows, supporting interpretation and communication in both research and industry
settings. These integrations show how LPGs bridge abstract analysis results and architectural
explanations by enabling node and edge properties to be directly mapped to visual variables.

3.4. Eating Our Own Dog Food: Visualising ClassViz in ClassViz

Figure 3 shows the internal structure of the ClassViz source code, rendered in ClassViz itself with
a manually arranged layout and minor post-processing for legibility. The diagram combines two
abstraction levels: filesystem folders, shown in UML-style package notation; and JavaScript modules,
shown as labelled rectangles. Modules are coloured by DSAR-inferred role stereotype (e.g., Controller,
Coordinator); folders by architectural layer (i.e., Presentation, Domain, Data). Although ClassViz
normally toggles between these modes, the figure overlays both to avoid duplication.

classviz Architectural layer

Presentation
J Domain

—_— Data

\2
&
\“‘
uiControls ‘\\“‘ Role stereot
ole stereotype
Z Controller
IinfoPanell IgraphPanell ”/,g,
»,'/6 [Interfacer
"/,, [Coordinator
IedgesPanell InodesPanell % [Service provider
Z
Z
%
Z

graphProcessing

I visualTransformations |

IheadlessTransformationsl Imigrationl

Figure 3: ClassViz source code organisation as depicted by ClassViz itself.

The graphProcessing folder implements the core pipeline, converting graphs into visual form by
collapsing classes, assigning visual cues, and filtering edges. The uiControls folder handles user
interaction, and utilities provides shared functions such as colour assignment.

This self-visualisation validates the tool on a non-trivial codebase and also offers design feedback:
the dominance of calls to utility functions suggests overcentralisation, while the segmentation of Ul
panels highlights interface modularity.

4. Reflection

The trajectory of ClassViz shows how a pragmatic artefact can evolve into a central research instrument.
Its growth was shaped by shifting research needs, with each inquiry prompting adaptations and, in
turn, new questions. Visualisation tools in software engineering are rarely static; ClassViz illustrates
how adaptability enables experimentation, pattern discovery, and explanation.

This adaptability stems from deliberate design minimalism and architectural openness. By avoiding
rigid assumptions, ClassViz remained easy to extend, supporting overlays for dynamic behaviour,
security, stereotypes, and VR with minimal friction. Its forks show that modifiability often outweighs

completeness. More broadly, explanation and inspection are not auxiliary but generative; seeing
structure often precedes explaining it, making explanatory tooling a valid research contribution.

References

(1]

(2]
(3]

(7]

[18]

S. A. Rukmono, M. R. Chaudron, Enabling Analysis and Reasoning on Software Systems through
Knowledge Graph Representation, in: 20th International Conference on Mining Software Reposi-
tories, IEEE, 2023, pp. 120-124. doi:10.1109/MSR59073.2023.00029.

D. Anikin, O. Borisenko, Y. Nedumov, Labeled Property Graphs: SQL or NoSQL?, in: 2019
Ivannikov Memorial Workshop (IVMEM), IEEE, 2019, pp. 7-13.

S. A. Rukmono, L. Ochoa, M. R. Chaudron, Deductive Software Architecture Recovery via Chain-
of-Thought Prompting, in: 44th International Conference on Software Engineering: New Ideas
and Emerging Results, Association for Computing Machinery, New York, NY, USA, 2024, pp. 92-96.
doi:10.1145/3639476.3639776.

S. A. Rukmono, L. Ochoa, T. M. Bressers, J. Kriiger, M. R. Chaudron, Evaluating Explanatory
Artefacts of DSAR-Recovered Architectures from Industrial Codebases, 2025.

N. Chotisarn, L. Merino, X. Zheng, S. Lonapalawong, T. Zhang, M. Xu, W. Chen, A Systematic
Literature Review of Modern Software Visualization, Journal of Visualization 23 (2020) 539-558.
M. Shahin, P. Liang, M. A. Babar, A Systematic Review of Software Architecture Visualization
Techniques, Journal of Systems and Software 94 (2014) 161-185.

K. Y. Fung, Classifying Java Classes Into Role Stereotypes Based on Their Behavior, Master’s thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands, 2023.

H. Tanis, LLM-Enhanced Code Comprehension by Combining Static and Dynamic Analysis in
Large-Scale C++ Systems, Master’s thesis, Eindhoven University of Technology, Eindhoven, The
Netherlands, 2025.

Y. He, Enhancing Program Comprehension through Visualization and LLM-based Summarization
of Behaviour, Master’s thesis, Eindhoven University of Technology, Eindhoven, The Netherlands,
2025.

H. v. Esch, Visualizing Software Behavior & Structure in Virtual Reality, Master’s thesis, Eindhoven
University of Technology, Eindhoven, The Netherlands, 2024.

P. Kloet, Multi-level Layout Algorithms for Visualizing Hierarchical Software Systems, Master’s
thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2024.

S. A. Rukmono, M. R. Chaudron, C. Jeffrey, Layered BubbleTea Software Architecture Vi-
sualisation, in: Working Conference on Software Visualization, IEEE, 2024, pp. 122-126.
d0i:10.1109/VISSOFT64034.2024.00024.

C. Jeffrey, A. P. Nugroho, S. A. Rukmono, Y. Widyani, CodeView: A Tool for Software Visualization
in Development View, in: 2024 IEEE International Conference on Data and Software Engineering
(ICoDSE), IEEE, 2024, pp. 67-72.

A K. Atisomya, Pengembangan Alat Visualisasi Arsitektur Perangkat Lunak untuk Analisis Multi-
dimensi, Bachelor’s thesis, Institut Teknologi Bandung, Sekolah Teknik Elektro dan Informatika,
Bandung, Indonesia, 2025.

M. Asuni, Effective Graphical Visualization of Vulnerabilities in C and C++ Programs, Master’s
thesis, University of Cagliari, Faculty of Engineering and Architecture, Cagliari, Italy, 2024.

R. Kakkenberg, S. A. Rukmono, M. R. Chaudron, W. Gerholt, M. Pinto, C. R. de Oliveira, Arvisan:
an Interactive Tool for Visualisation and Analysis of Low-Code Architecture Landscapes, in: Pro-
ceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages
and Systems, 2024, pp. 848—855.

F. Zamfirov, A. Radulescu, J. Kriiger, M. R. Chaudron, Lessons from Visualizing Software
Architecture Structure Conformance at Thermo Fisher Scientific, in: seaa, springer, 2025.
d0i:10.1007/978-3-032-04207-1_25.

S. A. Rukmono, L. Ochoa, M. R. Chaudron, Achieving High-Level Software Component Summa-

http://dx.doi.org/10.1109/MSR59073.2023.00029
http://dx.doi.org/10.1145/3639476.3639776
http://dx.doi.org/10.1109/VISSOFT64034.2024.00024
http://dx.doi.org/10.1007/978-3-032-04207-1_25

rization via Hierarchical Chain-of-Thought Prompting and Static Code Analysis, in: International
Conference on Data and Software Engineering, IEEE, 2023, pp. 7-12. doi:10.1109/IC0oDSE59534 .
2023.10292037.

[19] R. Wirfs-Brock, A. McKean, 1. Jacobson, J. Vlissides, Object Design: Roles, Responsibilities, and
Collaborations, Pearson Education, 2002.

[20] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley, 2012.

http://dx.doi.org/10.1109/ICoDSE59534.2023.10292037
http://dx.doi.org/10.1109/ICoDSE59534.2023.10292037

	1 Introduction
	2 Related Work
	3 Visualisation Approach
	3.1 RQ1: Lightweight Visual Inspection of Graphs—Our Motivation and Origin
	3.2 RQ2: Accessibility and Modifiability in Educational and Industrial Contexts
	3.3 RQ3: Visual Frontend for Architectural Analysis and Explanation
	3.4 Eating Our Own Dog Food: Visualising ClassViz in ClassViz

	4 Reflection

